• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Viviani » Qua Jan 09, 2013 14:30

\lim_{x\rightarrow0}\frac{\sqrt{x+2}+\sqrt{x+6}-\sqrt{6}-\sqrt{2}}{x}
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor leilahomsi » Qua Jan 09, 2013 17:35

Sendo x = 0 basta substituir x por 0 , vai ficar assim

\lim_{x->0} = \frac{\sqrt[]{2} + \sqrt[]{6} - \sqrt[]{6} - \sqrt[]{2}}{0}

Resultando em \frac{0}{0}
leilahomsi
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matematica
Andamento: cursando

Re: Limite

Mensagempor Viviani » Qui Jan 10, 2013 13:12

o resultado dessa questão é \frac{\sqrt{6}+\sqrt{2}}{4\sqrt{3}} , mas não consigo chegar nesse resultado :/
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite

Mensagempor e8group » Qui Jan 10, 2013 17:32

Dicas :
(1)
Reescreva a expressão inicial como \frac{\sqrt{2+x} - \sqrt{2}}{x} + \frac{\sqrt{6+x} - \sqrt{6}}{x} .

(2) Multiplique o numerador e o denominador pelo conjugado em (1) .

Utilize a propriedade a^2 - b^2 = (a-b)(a+b) em (2) .

Após isto basta tomar o limite .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.