• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área de Região plana limitada por funções

Área de Região plana limitada por funções

Mensagempor iarapassos » Qui Jan 03, 2013 18:52

A questão é o seguinte:
Calcule a área plana limitada pelas funções: y = 9/x, y = 9x e y = x.

Achei que seria o seguinte:

Como sabemos, através do estudo deste assunto. Temos que a região será a integral de f(x)-g(x), sendo f(x)>=g(x).
Bem, também sabemos que essa area deve ser subdivida em duas areas menores. A Area total será a soma de S1 e S2.
A minha dúvida é: Eu tenho três funções. Neste caso, a area entre elas será a maior menos as outras? Ou eu subtraio apenas uma?
Me ajudem , please!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Área de Região plana limitada por funções

Mensagempor Russman » Qui Jan 03, 2013 20:16

E acredito que a área a ser calculada é a em forma triangular, bem do centro do gráfico.

ScreenHunter_02 Jan. 03 20.31.gif
Grafico
ScreenHunter_02 Jan. 03 20.31.gif (3.88 KiB) Exibido 2497 vezes


Se sim, então você deve ir subtraindo e adicionando áreas menores de forma a varrer somente a de interesse. Os vértices da área são respectivamente x=0, x=1 e x=3.

Eu adicionaria a área de x=1 até x=3 do gráfico de 9/x, subtrairia a parte de baixo que é a área do gráfico de x de x=1 até x=3 , completaria com a área de 9x de x=0 até x=1 e por fim descontaria o que resta , que é a area de x de x=0 até x=1.

Acredito que assim conseguimos varrer a área que foi limitada pelas 3 funções. A sua integral é

S = \int_{1}^{3}\left (\frac{9}{x}-x   \right )dx -\int_{0}^{1}\left (9x-x   \right )dx
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}