por inkz » Qui Nov 22, 2012 02:49
UM PONTO P DESCREVE UMA CURVA SOBRE O GRÁFICO DA FUNÇÃO f(x,y) = x² + y² DE MODO QUE SUA PROJEÇÃO Q SOBRE O PLANO xy DESCREVE A RETA x + y = 1. DETERMINE O PONTO DA CURVA QUE SE ENCONTRA MAIS PRÓXIMO DO PLANO xy.
Não consegui nem entender o enunciado galera.. alguém pode me dar uma ajuda sobre o que devo fazer?
abraços!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Qui Nov 22, 2012 11:12
inkz escreveu:UM PONTO P DESCREVE UMA CURVA SOBRE O GRÁFICO DA FUNÇÃO f(x,y) = x² + y² DE MODO QUE SUA PROJEÇÃO Q SOBRE O PLANO xy DESCREVE A RETA x + y = 1. DETERMINE O PONTO DA CURVA QUE SE ENCONTRA MAIS PRÓXIMO DO PLANO xy.
Não consegui nem entender o enunciado galera.. alguém pode me dar uma ajuda sobre o que devo fazer?
abraços!!
A figura abaixo ilustra o exercício.

- figura.png (13.61 KiB) Exibido 4479 vezes
Note que o gráfico da função f é um paraboloide. Além disso, note que a curva descrita pela trajetória do ponto P (linha pontilhada em vermelho) sobre o gráfico de f forma uma parábola. O objetivo do exercício é determinar o ponto A, que representa o ponto dessa curva que está mais próximo do plano xy.
Para determinar o ponto A, comece observando que como ele está sobre o gráfico de f ele tem coordenadas (x, y, x² + y²), para algum par de números x e y.
Por outro lado, como a projeção de A está sobre a reta x + y = 1 (ou seja, y = 1 - x), podemos reescrever suas coordenadas como (x, 1 - x, x² + (1 - x)²).
Tudo que você precisa fazer agora é determinar qual é o valor de x que faz o ponto A ficar mais próximo do plano xy. Em outras palavras, você precisa determinar qual é o valor de x para o qual a distância do ponto A até o plano xy é a menor possível.
Agora tente concluir o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por inkz » Qui Nov 22, 2012 21:01
devo calcular a distância entre a reta e o ponto, não? porque essa já é a menor distância entre eles. ou não?
obrigado pela ajuda!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Sex Nov 23, 2012 11:07
inkz escreveu:devo calcular a distância entre a reta e o ponto, não? porque essa já é a menor distância entre eles. ou não?
Note que a menor distância entre o ponto A e o plano xy irá coincidir com a menor distância entre o ponto A e a reta x + y = 1.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por inkz » Sáb Nov 24, 2012 08:51
de fato
muito obrigado pela ajuda (:
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Vetores] Ponto de reta próximo a outros pares de ponto
por cmcrz97 » Ter Jun 19, 2018 20:29
- 0 Respostas
- 2809 Exibições
- Última mensagem por cmcrz97

Ter Jun 19, 2018 20:29
Álgebra Linear
-
- Valor mais próximo
por Balanar » Dom Ago 08, 2010 16:53
- 1 Respostas
- 5595 Exibições
- Última mensagem por Pedro123

Dom Ago 08, 2010 18:28
Desafios Difíceis
-
- Funções com mais de uma variável - curvas de nível
por Victor Mello » Sex Fev 21, 2014 14:23
- 2 Respostas
- 1612 Exibições
- Última mensagem por Victor Mello

Sex Fev 21, 2014 20:53
Funções
-
- [´PLANO] Ponto de intersecção de reta com plano
por manuel_pato1 » Ter Set 25, 2012 09:48
- 1 Respostas
- 14849 Exibições
- Última mensagem por LuizAquino

Ter Set 25, 2012 12:11
Geometria Analítica
-
- Localizar ponto no plano R³
por samra » Qui Set 20, 2012 13:33
- 4 Respostas
- 3082 Exibições
- Última mensagem por samra

Sáb Out 06, 2012 15:43
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.