• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Resolução incorreta?

[Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 23:04

Resolvi o seguinte exercício mas não cheguei no resultado correto.

\int sen^2xcos^2xdx = \int \frac{1}{2}(1-cos2x)\frac{1}{2}(1+cos2x)dx

\int \frac{1}{2}-\frac{1}{2}cos2x.\frac{1}{2}+\frac{1}{2}cos2xdx

\frac{1}{2}\int dx - \frac{1}{4}\int cos2xdx+\frac{1}{2}\int cos2xdx

u=2x
du=2dx

\frac{1}{2}x-\frac{1}{8} \int cosudu+\frac{1}{4}\int cosudu

\frac{1}{2}x-\frac{1}{8}sen2x+\frac{1}{4}sen2x+C

O resultado correto é:

\frac{1}{8}x-\frac{1}{32}sen4x+C

O que eu fiz de errado?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Resolução incorreta?

Mensagempor MarceloFantini » Seg Nov 12, 2012 05:37

Note que

\sin^2 x \cos^2 x = (\sin x \cos x)^2 = \left( \frac{\sin (2x)}{2} \right)^2 = \frac{1}{4} \sin^2 (2x)

= \frac{1}{4} (1 - \cos^2 (2x)) = \frac{1}{4} \left( 1 - \left( \frac{1 + \cos (4x)}{2} \right) \right) = \frac{1}{8} - \frac{\cos(4x)}{8}.

Integrar agora é fácil. Você errou em algumas das transformações que fez, e na distributiva também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Seg Nov 12, 2012 12:29

Marcelo, pode por favor demonstrar meu erro na distributiva? Não sei onde errei...
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Resolução incorreta?

Mensagempor MarceloFantini » Seg Nov 12, 2012 19:21

Refiro-me a esta distributiva: (1 - \cos (2x))(1 + \cos (2x)). Isto é um produto notável: (a-b)(a+b) = a^2 -b^2. Se não percebesse, a conta é

(1 - \cos (2x))(1 + \cos (2x)) = 1 + \cos (2x) - \cos (2x) - \cos^2 (2x) = 1 - \cos^2 (2x).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Resolução incorreta?

Mensagempor MrJuniorFerr » Seg Nov 12, 2012 20:34

Obrigado Marcelo.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: