• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Cálculo da área 2

[Integrais] Cálculo da área 2

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 20:23

A partir do gráfico anexado, o exercício pede:

Calcule a área da região sombreada. Gabarito: \frac{16}{3}

Tentei da seguinte forma sem sucesso:

\int_{0}^2 x^2dx = \frac{8}{3}-0=\frac{8}{3}

Como fazer?
Anexos
IMG0979A.jpg
Gráfico
IMG0979A.jpg (9.81 KiB) Exibido 1807 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Cálculo da área 2

Mensagempor CaptainObvious » Dom Nov 11, 2012 20:30

Pelo que fizeste, integrou a área entre x^2 e o eixo x. O que você quer é a área entre a reta y = 4 e x^2, ou seja, você deve integrar (4-x^2).
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Integrais] Cálculo da área 2

Mensagempor MrJuniorFerr » Dom Nov 11, 2012 20:35

Entendi, obrigado Captain.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.