• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade com limites em cálculo I

Dificuldade com limites em cálculo I

Mensagempor Vidotti » Dom Nov 04, 2012 20:42

Estou no curso a pouco tempo, tive apenas 2 aulas e tive dificuldade com um exercício pois ele termina como inexistente e não sei muito bem quando um limite cai nessa razão. Só sei que quando seus limites laterais são diferentes então ele não existe.

Então, vou colocar o ex aqui com a minha resolução. Fiz de um jeito e o meu resultado foi 1, porém, na resposta do exercício dá como não existe.

\lim_{x\to0} \frac{\sqrt{x^4+x^2}}{x}

\lim_{x\to0} \frac{\sqrt{x^2(x^2+1)}}{x}

\lim_{x\to0} \frac{x\sqrt{x^2+1}}{x}

\lim_{x\to0} \sqrt{x^2+1}

\lim_{x\to0} \sqrt{0^2+1}

\lim_{x\to0} \sqrt{0+1}

\lim_{x\to0} \sqrt{1}

\lim_{x\to0} 1
Vidotti
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 04, 2012 20:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Dificuldade com limites em cálculo I

Mensagempor MarceloFantini » Dom Nov 04, 2012 20:47

Note que \sqrt{x^2} = |x|, então \sqrt{x^2(x^2 +1)} = |x| \sqrt{x^2 +1}. Quando fizer os limites laterais, terá 1 e -1. Além disso, sua resolução das quatro últimas linhas está grosseiramente errada, pois você aplicou o limite e continuou escrevendo-o. Isto é passível de anulamento de nota, pois é erro conceitual.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade com limites em cálculo I

Mensagempor Vidotti » Dom Nov 04, 2012 21:01

Como eu já disse, fiz apenas 2 aulas, gostaria de saber o por que de estar grosseiramente errado o que fiz nas ultimas linhas.

E a quanto os limites laterais, devo entender que sempre que tiver |x| / x , não existe?
Vidotti
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 04, 2012 20:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Dificuldade com limites em cálculo I

Mensagempor MarceloFantini » Dom Nov 04, 2012 21:09

Porque sempre após aplicar o limite você deixa de escrevê-lo, por exemplo \lim_{x \to 0} x^2 = 0, e não \lim_{x \to 0} x^2 = \lim_{x \to 0} 0.

Sim, o limite \lim_{x \to 0} \frac{|x|}{x} não existe. Se tomarmos x \to 0^+, isto é, aproximando-se da origem pela direita, temos valores positivos para x, daí |x| = x e o limite será \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1. De forma semelhante, tomando x \to 0^-, teremos |x| = -x e o limite será \lim_{x \to 0^-} \frac{-x}{x} = \lim_{x \to 0^-} -1 = -1.

Existe um teorema que diz que o limite existe se e somente se os limites laterais são iguais. Como são diferentes o limite não existe.
Editado pela última vez por MarceloFantini em Seg Nov 05, 2012 10:26, em um total de 1 vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade com limites em cálculo I

Mensagempor Vidotti » Dom Nov 04, 2012 21:17

certo, obrigado mesmo pela resposta, era isso mesmo que eu queria saber
Vidotti
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 04, 2012 20:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}