por Sobreira » Sáb Out 13, 2012 00:07
![f (x) \lim_{4-}\frac{\sqrt[]{16-{x}^{2}}}{x-4} f (x) \lim_{4-}\frac{\sqrt[]{16-{x}^{2}}}{x-4}](/latexrender/pictures/ce6d42505c105a7702d299f740a0fa83.png)
Vendo este limite.
Bom, a técnica que eu utilizo para resolver é que, se tratando de um limite genérico eu substituo o valor de x para o qual está tendendo a função (4).
Neste caso, com a substituição surgirá uma indeterminação do tipo 0/0, então eu sei que tenho que fatorar este polinômio para efetuar os cálculos.
Minha dúvida é, se para quando eu efetuar uma substituição e o numerador der uma constante e o denominador zero, para análise do sinal do infinito, eu devo fatorar o denominador sempre??
Ex.

Nestes casos que o numerador der uma constante e o denominador der zero direto com a substituição eu devo fatorar o denominador ou posso fazer direto considerando valores maiores que 2 (Por Ex. 3)?
Editado pela última vez por
Sobreira em Sáb Out 13, 2012 01:32, em um total de 1 vez.
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MrJuniorFerr » Sáb Out 13, 2012 00:50
Em Limites infinitos, ou seja, quando o numerador der diferente de 0 de primeira, não é necessário fatorar o denominador. Neste exemplo que você citou, sabe-se que substituindo o valor de t no numerador, será uma constante positiva e como t tende a

, substituindo 2,01 em t no denominador, você obtém um valor maior que zero, ou seja, o resultado será +infinito.
Lembre-se do teorema de limites infinitos, quando a constante do numerador for positiva (c>0) e o denominador tender a

, o resultado será +infinito. Se c<0 e o denominador tender a

, o resultado será -infinito, e por aí vai...
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Sáb Out 13, 2012 01:05
Atente para o fato de que sua notação está completamente errada. O correto é

.
Semelhante para o segundo caso, onde você inclusive errou a notação da função: disse que era uma função da variável

quando na verdade é

. Troque uma das duas: escreva

ou

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sobreira » Sáb Out 13, 2012 01:37
Obrigado pelas dicas.
E acabei não observando os detalhes das notações. Obrigado.
A questão da fatoração do denominador, eu fiquei confuso pois eu geralmente também resolvo de forma direta, mas em algumas resoluções de livros, eu vi autores utilizando a fatoração para a resolução do limite.
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por Sobreira » Seg Out 29, 2012 23:29
Fala galera,
Estou neste tópico aki de novo pra comentar um fato que ocorreu a respeito dessa dúvida.
Hoje fiz uma prova de cálculo e antes da prova um colega questionou ao professor um exercício de limite infinito.
O professor disse que não aceitava a resolução por este método (aproximando dos valores para onde x estava tendendo) e só aceitaria caso todo denominador fosse racionalizado pois o procedimento de aproximação estava errado pois não era preciso e era impossível chegar a um valor tão próximo do valor para o qual x está convergindo.
(Não sei se fui bem claro).
Eu resolvi então fatorando o denominador....mas fiquei com essa dúvida agora novamente.Resolvi mais de 60 exercícios por aproximação e a resposta bateu exatamente como o gabarito.....já pesquisei em livros e os autores descrevem este procedimento como sendo válido....
E agora???
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Ter Out 30, 2012 07:13
Sobreira, confesso que não entendi bem qual foi o problema. Você poderia citar um exemplo de um exercício que você fez, incluindo toda a explicação e procedimento, e dizer que parte exatamente seu professor disse que era inválido?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sobreira » Ter Out 30, 2012 08:19

Tomando este exercício como exemplo:
O meu questionamento inicial era de que, substituindo o valor para o qual x está tendendo na questão (neste caso 2) de cara é possível verificar que teremos cte/0.

Bom, o que eu gostaria de saber, é se a partir deste instante eu poderia utilizar valores próximos de 2 pela direita (neste caso) para suspeitar o comportamento do infinito se (

ou

).
Resolvendo este:



Este resultado nos levaria a suspeitar que se trata de um limite tendendo ao infinito positivo (

).
E então o professor informou que não aceitaria este procedimento, então por consequência, teríamos que fatorar o denominador para a resolução do exercício (minha dúvida inicial respondida pelo colega MrJuniorFerr neste mesmo tópico).
Como eu disse, resolvi vários exercícios desta forma e as respostas foram corretas e mesmo que com este procedimento, eu esteja "apenas" investigando o comportamento do infinito, gostaria de saber se é válido ou não este procedimento.
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Ter Out 30, 2012 09:07
Vamos tomar alguns cuidados.
Sobreira escreveu:O meu questionamento inicial era de que, substituindo o valor para o qual x está tendendo na questão (neste caso 2) de cara é possível verificar que teremos cte/0.

Bom, o que eu gostaria de saber, é se a partir deste instante eu poderia utilizar valores próximos de 2 pela direita (neste caso) para suspeitar o comportamento do infinito se (

ou

).
Resolvendo este:



Este resultado nos levaria a suspeitar que se trata de um limite tendendo ao infinito positivo (

)
Primeiro, você está errando grosseiramente a notação ao fazer isto:

. Se você 'substituiu' o ponto, por definição não pode escrever o limite junto. Como comentário ao seu método, isto não é uma resolução, porém é válido que você faça tais investigações para entender o comportamento da função. Adotar isto como resposta, no entanto, é errado.
Sobreira escreveu:E então o professor informou que não aceitaria este procedimento, então por consequência, teríamos que fatorar o denominador para a resolução do exercício (minha dúvida inicial respondida pelo colega MrJuniorFerr neste mesmo tópico).
Como eu disse, resolvi vários exercícios desta forma e as respostas foram corretas e mesmo que com este procedimento, eu esteja "apenas" investigando o comportamento do infinito, gostaria de saber se é válido ou não este procedimento.
O seu professor está correto ao não aceitar este procedimento numa resolução, mas ele está errado quanto à "validade" disto, no sentido em que isso contribui, sim, para entender melhor o comportamento da função. No entanto, como já disse, você
não pode escrever isto numa resolução. Neste exemplo mesmo, a resolução deveria ser algo como:
Escrevendo

, teremos que o limite torna-se

,
onde o denominador irá para zero pela direita, logo positivo, enquanto que o numerador permanece constante, portanto

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- limites infinitos
por oleve » Qua Jan 21, 2009 18:15
- 1 Respostas
- 3022 Exibições
- Última mensagem por Sandra Piedade

Sáb Jan 24, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Limites Infinitos. Ajuda
por valeuleo » Qua Jun 22, 2011 12:39
- 4 Respostas
- 3130 Exibições
- Última mensagem por renatav

Dom Jun 26, 2011 22:46
Cálculo: Limites, Derivadas e Integrais
-
- Limites infinitos com modulo.
por Sobreira » Sex Out 12, 2012 18:04
- 13 Respostas
- 9035 Exibições
- Última mensagem por Sobreira

Sex Out 12, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
-
- Limites infinitos com raiz
por Erick » Sáb Mar 30, 2013 11:11
- 1 Respostas
- 2892 Exibições
- Última mensagem por young_jedi

Sáb Mar 30, 2013 12:05
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limites infinitos envolvendo série
por davifd_ » Ter Ago 18, 2015 15:56
- 10 Respostas
- 10636 Exibições
- Última mensagem por nakagumahissao

Qua Ago 19, 2015 09:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.