
Consegui calcular a derivada primeira em x:

E a derivada primeira em y:

Tenho as respostas das derivadas segundas, mas n´~ao estou conseguindo calculá-las, pois são expressões longas
com vários produtos, não consegui derivar tudo!!
Alguém pode me ajudar?
Derivada segunda em x:

derivada segunda em y:






![\frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] . \frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] .](/latexrender/pictures/a9315b845a009924bf83f392af36d003.png)
.
.
.
e

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)