por barbara-rabello » Qui Out 18, 2012 12:22

Consegui calcular a derivada primeira em x:

E a derivada primeira em y:

Tenho as respostas das derivadas segundas, mas n´~ao estou conseguindo calculá-las, pois são expressões longas
com vários produtos, não consegui derivar tudo!!
Alguém pode me ajudar?
Derivada segunda em x:

derivada segunda em y:

-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por barbara-rabello » Qui Out 18, 2012 12:23
Na questão é e^(-2xy), não consegui ajeitar no editor, desculpem!
-
barbara-rabello
- Usuário Dedicado

-
- Mensagens: 49
- Registrado em: Sex Mar 02, 2012 16:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por young_jedi » Qui Out 18, 2012 16:32
partindo da derivada primeira que voce ja calculou

fazendo as multiplicações

resolvendo as somas

tente fazer para a derivada segunda de y
Dicas: na hora de fazer exponecial o expoente tem que ficar entre chaves e^{-2xy}
e na derivada parcial voce deve ter feito no denominador \partialx, mas tem que ter um espaço entre o x
\partial x ou \partial y
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Qui Out 18, 2012 18:20
Como,
![\frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] . \frac{\partial }{\partial y}f(x,y) = -2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ] .](/latexrender/pictures/a9315b845a009924bf83f392af36d003.png)
Assim ,
![\frac{\partial^2 }{\partial y^2}f(x,y) = \frac{\partial }{\partial y}\left(-2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ]\right) \frac{\partial^2 }{\partial y^2}f(x,y) = \frac{\partial }{\partial y}\left(-2e^{-2xy}\left[ ysin(x^2+y^2)+x(cos(x^2+y^2)) \right ]\right)](/latexrender/pictures/62dd5124a8541e81dd372396759baa33.png)
.
Agora seja ,

.
![\frac{\partial^2 }{\partial y^2}f(x,y) = -2 \frac{\partial }{\partial y}\left(e^{-2xy}\cdot z(x,y) \right) = -2 \left( z(x,y)\left[\frac{\partial }{\partial y}e^{-2xy} \right ] +e^{-2xy}\left[\frac{\partial }{\partial y}z(x,y) \right ]\right ) \frac{\partial^2 }{\partial y^2}f(x,y) = -2 \frac{\partial }{\partial y}\left(e^{-2xy}\cdot z(x,y) \right) = -2 \left( z(x,y)\left[\frac{\partial }{\partial y}e^{-2xy} \right ] +e^{-2xy}\left[\frac{\partial }{\partial y}z(x,y) \right ]\right )](/latexrender/pictures/11fc44a260833d7ded4ff8f504e74781.png)
.
Derivando por partes ,

e

Fazendo as substituições , obteremos que :
OBS.: Recomendo este site :
http://www.codecogs.com/latex/eqneditor.php?lang=pt-br para visualizar o latex antes de postar aqui .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- segunda derivada
por jmario » Sex Mai 07, 2010 22:25
- 2 Respostas
- 2606 Exibições
- Última mensagem por Molina

Sáb Mai 08, 2010 14:00
Cálculo: Limites, Derivadas e Integrais
-
- [derivada segunda]
por nayra suelen » Qua Mai 30, 2012 13:38
- 2 Respostas
- 1522 Exibições
- Última mensagem por nayra suelen

Qua Mai 30, 2012 14:42
Cálculo: Limites, Derivadas e Integrais
-
- Derivada da primeira e derivada da segunda
por Laisa » Ter Fev 26, 2019 17:02
- 1 Respostas
- 5551 Exibições
- Última mensagem por DanielFerreira

Qui Set 05, 2019 23:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivada primeira e segunda
por luiz3107 » Ter Ago 17, 2010 16:39
- 2 Respostas
- 2830 Exibições
- Última mensagem por luiz3107

Ter Ago 17, 2010 17:54
Cálculo: Limites, Derivadas e Integrais
-
- derivada de segunda ordem
por lgbmp » Sex Set 03, 2010 19:25
- 2 Respostas
- 2920 Exibições
- Última mensagem por lgbmp

Seg Set 06, 2010 13:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.