• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Conceito de Existência

[Limite] Conceito de Existência

Mensagempor eli83 » Qua Out 10, 2012 10:33

Aplicando o conceito de exitência de limite, verifique se existe o limite da seguinte função quando x tende para dois:

f(x) = {\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}


Fiz utilizando Continuidade.
Se f é contínua em a, então as três condições deverão ser satisfeitas.

existe f(a)

existe \lim_{x\to a}

\lim_{x\to a}f(x) = f(a)


\lim_{x\to a}f(x) = \lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} = {\displaystyle\biggl[24\biggr]^{5}} (Posso aplicar a definição direta de limite neste caso, pois não terei problemas com o denominador.)

f(2) = {\displaystyle\biggl[24\biggr]^{5}}

E como temos:

\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}} = f(2)

Então existe

\lim_{x\to 2}{\displaystyle\biggl[\frac{x^3 + 2x +6}{x^2 +5}+ 4 x^2 + 6\biggr]^{5}}

Tenho uma dúvida em relação ao enunciado ele diz aplicando o conceito de existência de limite e eu solucionei aplicando o conceito de continuidade, isto estaria correto.
E também gostaria que verificassem a minha resolução.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor young_jedi » Qua Out 10, 2012 19:27

Neste caso voce deve verificar se os limites laterais existem e se são iguais, sendo assim o limite existe
Como o exercicio so pede para verificar a existencia do limite não precisa verificar se a função é continua
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor MarceloFantini » Qua Out 10, 2012 21:06

Um outro toque, nunca escreva \lim_{x \to a}, e sim \lim_{x \to a} f(x). Só existe limite de funções.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor eli83 » Qui Out 11, 2012 09:16

E nesse caso como faço. Atribuo valores aleatórios a esquerda e a direita de 2.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Conceito de Existência

Mensagempor young_jedi » Qui Out 11, 2012 17:25

Sim voce atribui valores proximos a 2 pela direita e pela esquerda, veja se eles convergem para um mesmo valor, analisando a questão é possivel ver que sim e portanto o limite existe.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)