• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Lateral

[Limite] Lateral

Mensagempor eli83 » Ter Out 09, 2012 11:15

Encontre o limite da função:

\begin{equation*}
f(x) = \left\{
\begin{array}{rl}
3x + 1 & \text{se } x < 1\\
x^3 & \text{se } x\geq 1\\
\end{array} \right.
\end{equation*}

Utilizando limites laterais temos:

\lim_{\ x\to1^{-}}{3x +1} = \lim_{\ x\to1^{-}}{4} = 4

\lim_{\ x\to1^{+}}{x^3} = 1

O limite de uma existe, em dado ponto, quando existirem os limites laterais (no ponto dado) pela direita e pela esquerda e os mesmos forem iguais.
E neste caso como os limites laterais são diferentes, portanto não existe limite da função no ponto dado.

Gostaria que alguém verificasse se está correta a minha resolução.
Editado pela última vez por eli83 em Qua Out 10, 2012 00:18, em um total de 1 vez.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Lateral

Mensagempor MarceloFantini » Ter Out 09, 2012 18:11

Novamente, está incorreto o seu uso da notação de limite. Ver a resposta aos tópicos #1 e #2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Lateral

Mensagempor eli83 » Ter Out 09, 2012 22:54

Nossa que vício que é isso. Estou corringo o erro em todos os tópicos.
Grata.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Lateral

Mensagempor DanielFerreira » Ter Out 09, 2012 22:59

Eli83,
que bom vê-la por aqui!

Seja bem-vinda.

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Limite] Lateral

Mensagempor eli83 » Qua Out 10, 2012 00:21

Olá Daniel. Obrigada.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}