• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limites laterais

[Limite] Limites laterais

Mensagempor TonyR » Sáb Set 01, 2012 13:18

Olá,
Estava tentando resolver esse exercício de limite lateral através de produtos notáveis e fatoração, mas acabei empacando. Alguém poderia ajudar?

\lim_{x\to1}\frac{x-1}{x^3-x^2+x+1}

Tentei colocando o x em evidência, mas o "+1" acaba atrapalhando a simplificação. Teria como resolver o exercício utilizando produtos notáveis ou não?


Obrigado.
TonyR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Set 01, 2012 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Limite] Limites laterais

Mensagempor LuizAquino » Sáb Set 01, 2012 15:41

TonyR escreveu:Olá,
Estava tentando resolver esse exercício de limite lateral através de produtos notáveis e fatoração, mas acabei empacando. Alguém poderia ajudar?

\lim_{x\to1}\frac{x-1}{x^3-x^2+x+1}

Tentei colocando o x em evidência, mas o "+1" acaba atrapalhando a simplificação. Teria como resolver o exercício utilizando produtos notáveis ou não?


O número 1 não é raiz do polinômio no denominador. Sendo assim, ele não terá um fator do tipo (x - 1). Ou seja, você não poderá efetuar uma simplificação com o numerador.

De qualquer modo, não é necessário simplificar coisa alguma nesse exercício, pois esse limite não apresenta uma indeterminação. Ele pode ser resolvido diretamente:

\lim_{x\to1}\frac{x-1}{x^3-x^2+x+1} = \frac{1 - 1}{1^3 - 1^2 + 1 + 1} = \frac{0}{2} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.