por allakyhero » Sáb Jun 30, 2012 12:41
Bom dia a todos!
Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...
Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.
49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0
Depois dai não sei o que fazer...
Alguém poderia me auxiliar?
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Sáb Jun 30, 2012 14:41
Você deseja calcular o ponto extremo da função f(x) = 3x² - 12x + 5 ?
Para isto, derive-a. A teoria garante que a função é extrema no ponto em que f'(x) = 0. Assim,
f'(x) = 6x-12 = 0 ----> x=2.
O valor dessa função é dado tomando então, x=2.
f(x=2) = 3.2² - 12.2 + 5 = -12 + 5 = -7.
Portanto o ponto extremo dessa função é (2,-7). Como, f''(x) = 6 >0 o ponto de extremo é de mínimo pois a função é concava para baixo!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Sáb Jun 30, 2012 18:13
Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Russman » Sáb Jun 30, 2012 18:40
MarceloFantini escreveu:Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.
Isso, isso. Troquei as palavras. k
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por allakyhero » Dom Jul 01, 2012 00:43
Russman, Obrigado
Poderia me explicar porque "x = 2" ?
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Dom Jul 01, 2012 10:18
Russman escreveu:A teoria garante que a função é extrema no ponto em que f'(x) = 0.
Cuidado! A teoria não garante isso.
Por exemplo, para a função

temos que

. Entretanto, no ponto x = 1 não temos nem máximo e nem mínimo para essa função.
O correto seria dizer algo como: "
a teoria garante que a função pode ser extrema no ponto em que f'(x) = 0".
Observe que "
pode ser" e "
é" são coisas bem distintas!
allakyhero escreveu:Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...
Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.
49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0
Depois dai não sei o que fazer...
Alguém poderia me auxiliar?
Observe que o exercício lhe forneceu uma função (no caso, f(x) = 3x² - 12x + 5) e um intervalo (no caso, [0, 3]).
Nesse contexto, a ideia é usar o chamado "Método do Intervalo Fechado" para resolver o exercício. Para saber mais a respeito desse método, eu gostaria de recomendar que você assista a videoaula "19. Cálculo I - Máximo e Mínimo de Funções". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquinoQuanto a última passagem que você postou, perceba que:

Como você exibiu dúvidas na resolução dessa equação, eu aproveito para recomendar que você assista também a videoaula "Matemática Zero - Aula 13 - Equação do Primeiro Grau". Ela esta disponível no canal do Nerckie no YouTube:
http://www.youtube.com/nerckieEu espero que as videoaulas indicas possam lhe ajudar a tirar suas dúvidas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por allakyhero » Dom Jul 01, 2012 11:06
LuizAquino, agradeço pela ajudá e pelos links do youtube.
Abraço!
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Máximo e mínimo
por thadeu » Qua Nov 18, 2009 13:47
- 1 Respostas
- 3999 Exibições
- Última mensagem por Elcioschin

Qua Nov 18, 2009 17:50
Trigonometria
-
- [Maximo e Minimo]
por Scheu » Sex Mar 16, 2012 01:23
- 1 Respostas
- 2281 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:14
Cálculo: Limites, Derivadas e Integrais
-
- máximo e minimo
por brunoguim05 » Qua Mai 28, 2014 15:26
- 0 Respostas
- 1471 Exibições
- Última mensagem por brunoguim05

Qua Mai 28, 2014 15:26
Geometria Analítica
-
- Otimização - Máximo e Mínimo
por elbert005 » Dom Jun 05, 2011 20:32
- 0 Respostas
- 4624 Exibições
- Última mensagem por elbert005

Dom Jun 05, 2011 20:32
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo e Mínimo] - Teoria?
por allakyhero » Dom Jul 01, 2012 13:38
- 3 Respostas
- 2244 Exibições
- Última mensagem por e8group

Dom Jul 01, 2012 16:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.