• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de variacao - area do circulo !

Taxa de variacao - area do circulo !

Mensagempor andersoneng » Sex Jun 29, 2012 10:40

ola pessoal ! tenho mais uma duvida !
na questao -

A área de um circulo está relacionada com seu diâmetro pela equação A=Pi/4.D².A que taxa a área
muda em relação ao diâmetro quando o diâmetro é 10m?

td bem, derivo,aplico 10m em D e encontro a resposta.
no caso 5pi. mas um amigo meu disse que eh 5pim"2m.(METRO QUDRADO POR METRO).
isso esta certo ? pq ?
andersoneng
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Jun 25, 2012 20:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: Graduação Engenharia de Produção
Andamento: cursando

Re: Taxa de variacao - area do circulo !

Mensagempor e8group » Sex Jun 29, 2012 11:27

andersoneng escreveu: mas um amigo meu disse que eh 5pim"2m.(METRO QUDRADO POR METRO).
isso esta certo ? pq ?
Sim ,Claro !!! pois neste caso a área estar variando em relação ao Diâmetro , ou seja ,neste caso
unidade do diâmetro (m) , área (m²) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Taxa de variacao - area do circulo !

Mensagempor Russman » Sex Jun 29, 2012 21:18

Sim! Veja que esta taxa \frac{d}{dr}A tem unidade de área por comprimento, isto é, \left[ \frac{d}{dr}A \right]=\frac{m^{2}}{m}. A área varia em tantos metros quadrados a cada metro que varia o raio.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.