• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] regra do produto, da cadeia e trigonometria

[Derivada] regra do produto, da cadeia e trigonometria

Mensagempor souzalucasr » Sáb Mai 05, 2012 19:33

Olá pessoal,

Gostaria de ajuda na seguinte questão, que envolve derivadas com uso da regra do produto, regra da cadeia e trigonometria. Resolvi a questão em uma apostila, mas a solução está diferente do meu resultado e eu gostaria de verificar com vocês. Posto abaixo minha resolução e a resposta dada.

Determinar a derivada da expressão abaixo
f(x)=x\cdot  sen(\frac {\pi}{5}+3x)+cos^2(\frac {\pi}{5}+x)

Resolvi da seguinte forma:

f'(x)=(x\cdot  sen(\frac {\pi}{5}+3x))' +(cos^2(\frac {\pi}{5}+x))' (derivada da soma = soma das derivadas)

Na primeira derivada, como é um produto, aplico a regra do produto. Na segunda, aplico a regra da cadeia. Sendo assim, temos:

f'(x)=(x)'\cdot  sen(\frac {\pi}{5}+3x)+x\cdot (sen(\frac {\pi}{5}+3x))'+(cos(\frac {\pi}{5}+x))'\cdot ((cos(\frac {\pi}{5}+x))^2)'

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {\pi}{5}+x)\cdot 2 cos(\frac {\pi}{5}+x)

Então, minha resposta ficou assim:

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-2sen(\frac {\pi}{5}+x) cos(\frac {\pi}{5}+x)

E a resposta da apostila é a seguinte:

f'(x)=sen(\frac {\pi}{5}+3x)+3x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {2\pi}{5}+2x)

Eu estou errado ou a resposta que está errada?

Desde já, muito obrigado pela ajuda de vocês!
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando

Re: [Derivada] regra do produto, da cadeia e trigonometria

Mensagempor LuizAquino » Sáb Mai 05, 2012 19:54

souzalucasr escreveu:Olá pessoal,

Gostaria de ajuda na seguinte questão, que envolve derivadas com uso da regra do produto, regra da cadeia e trigonometria. Resolvi a questão em uma apostila, mas a solução está diferente do meu resultado e eu gostaria de verificar com vocês. Posto abaixo minha resolução e a resposta dada.

Determinar a derivada da expressão abaixo
f(x)=x\cdot  sen(\frac {\pi}{5}+3x)+cos^2(\frac {\pi}{5}+x)

Resolvi da seguinte forma:

f'(x)=(x\cdot  sen(\frac {\pi}{5}+3x))' +(cos^2(\frac {\pi}{5}+x))' (derivada da soma = soma das derivadas)

Na primeira derivada, como é um produto, aplico a regra do produto. Na segunda, aplico a regra da cadeia. Sendo assim, temos:

f'(x)=(x)'\cdot  sen(\frac {\pi}{5}+3x)+x\cdot (sen(\frac {\pi}{5}+3x))'+(cos(\frac {\pi}{5}+x))'\cdot ((cos(\frac {\pi}{5}+x))^2)'

f'(x)=sen(\frac {\pi}{5}+3x)+x\cdot cos(\frac {\pi}{5}+3x)-sen(\frac {\pi}{5}+x)\cdot 2 cos(\frac {\pi}{5}+x)


Você esqueceu de aplicar a regra da cadeia no termo \textrm{sen}\,\left(\frac{\pi}{5}+3x\right) . Note que:

\left[\textrm{sen}\,\left(\frac{\pi}{5}+3x\right)\right]^\prime = \left[\cos \left(\frac{\pi}{5}+3x\right)\right]\left(\frac{\pi}{5}+3x\right)^\prime = 3\cos \left(\frac{\pi}{5}+3x\right)

Já no termo \cos^2\left(\frac {\pi}{5}+x\right) temos que aplicar a regra da cadeia duas vezes. Note que:

\left\{\left[\cos \left(\frac {\pi}{5}+x\right)\right]^2\right\}^\prime = 2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[\cos\left(\frac {\pi}{5}+x\right)\right]^\prime

=  2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[-\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)\right]\left[\left(\frac {\pi}{5}+x\right)\right]^\prime

=  2\left[\cos \left(\frac {\pi}{5}+x\right)\right]\left[-\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)\right]\cdot 1

=  -2\cos \left(\frac {\pi}{5}+x\right)\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right)

Por fim, usando a identidade trigonométrica 2\,\textrm{sen}\,\alpha\cos \alpha = \,\textrm{sen}\, 2\alpha , temos que:

-2\cos \left(\frac {\pi}{5}+x\right)\,\textrm{sen}\,\left(\frac {\pi}{5}+x\right) = -\,\textrm{sen}\,\left(\frac {2\pi}{5} + 2x\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada] regra do produto, da cadeia e trigonometria

Mensagempor souzalucasr » Sáb Mai 05, 2012 20:16

Perfeito, Luiz! Mais uma vez você me ajudando =)

Muito obrigado!
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59