por Beatriz4 » Sáb Abr 28, 2012 20:58
Já tentei pesquisar online mas não consigo encontrar a demonstração do seguinte teorema:
Seja

,

e

.
Se f for diferenciável em (a,b), então f é contínua em (a,b).
Será que alguém pode fornecer-me esta demonstração ou pelo menos indicar-me um link viável para um site com a demosntração.
Desde já um muito obrigada a quem puder ajudar =)
-
Beatriz4
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Nov 25, 2011 21:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Biomédica
- Andamento: cursando
por fraol » Ter Mai 01, 2012 01:40
Em
http://cs.unitbv.ro/~pascu/analysis/Derivability.pdf, na página 58: Proposition 6.2.10
há uma demonstração para o teorema.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 5843 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade, Derivada Parcial e Função Diferenciável]
por raimundoocjr » Qui Out 24, 2013 17:28
- 0 Respostas
- 1103 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 17:28
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade de função] Demonstração
por Gustavo Gomes » Qui Nov 08, 2012 21:41
- 2 Respostas
- 1467 Exibições
- Última mensagem por Gustavo Gomes

Sex Nov 09, 2012 21:33
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade] Demonstração
por Aliocha Karamazov » Sáb Out 29, 2011 14:20
- 4 Respostas
- 2959 Exibições
- Última mensagem por Aliocha Karamazov

Sáb Out 29, 2011 21:11
Cálculo: Limites, Derivadas e Integrais
-
- Funcão diferenciável
por Cleyson007 » Ter Jun 12, 2012 15:47
- 2 Respostas
- 2035 Exibições
- Última mensagem por joaofonseca

Ter Jun 12, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.