• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Definida do cosseno

Integral Definida do cosseno

Mensagempor ENG » Sáb Abr 28, 2012 04:09

Olá. Estou estudando, através de um livro, o cálculo do coeficiente para uma serie trig. de Fourier de uma certa função. Lá tem um exemplo assim:
{a}_{n}=\frac{2}{0,2}\int_{0}^{0,1}5.cos\,n\,{\omega}_{0}\,t\,dt=\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right] e a solução do exemplo continua...

O trecho no qual está minha dúvida é a última parte da expressão( teria que colocar os limites 0 e 0,1 nos colchetes mas não consegui):
\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right]

Sei que \int_{}^{} cos\,u\,du = sen\,u + C, mas como surgiu \frac{1}{n{\omega}_{0}} ?
ENG
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 28, 2012 03:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral Definida do cosseno

Mensagempor Russman » Sáb Abr 28, 2012 04:48

Pense na função

f(x) = cos(kx) , onde k é uma constante real.

Se vc integrar esta função com ralação a x terá de apelar para uma substituição, a fim de tomar o integrando como f(u) = cos(u). Veja, tomando u(x)=kx temos então dx = \frac{1}{k}du e , portanto,

\int_{}^{}cos(kx)dx = \int_{}^{}cos(u) \frac{du}{k} = \frac{1}{k}\int_{}^{}cos(u) du =\frac{1}{k}sen(u) +c = \frac{1}{k}sen(kx) + c.

A sua integral é com relação a t e não n{\omega}_{0}t.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)