• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Definida do cosseno

Integral Definida do cosseno

Mensagempor ENG » Sáb Abr 28, 2012 04:09

Olá. Estou estudando, através de um livro, o cálculo do coeficiente para uma serie trig. de Fourier de uma certa função. Lá tem um exemplo assim:
{a}_{n}=\frac{2}{0,2}\int_{0}^{0,1}5.cos\,n\,{\omega}_{0}\,t\,dt=\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right] e a solução do exemplo continua...

O trecho no qual está minha dúvida é a última parte da expressão( teria que colocar os limites 0 e 0,1 nos colchetes mas não consegui):
\left[\frac{2 \ast 5}{0,2}.\frac{1}{n{\omega}_{0}}sen\,n\, {\omega}_{0}\,t \right]

Sei que \int_{}^{} cos\,u\,du = sen\,u + C, mas como surgiu \frac{1}{n{\omega}_{0}} ?
ENG
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 28, 2012 03:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral Definida do cosseno

Mensagempor Russman » Sáb Abr 28, 2012 04:48

Pense na função

f(x) = cos(kx) , onde k é uma constante real.

Se vc integrar esta função com ralação a x terá de apelar para uma substituição, a fim de tomar o integrando como f(u) = cos(u). Veja, tomando u(x)=kx temos então dx = \frac{1}{k}du e , portanto,

\int_{}^{}cos(kx)dx = \int_{}^{}cos(u) \frac{du}{k} = \frac{1}{k}\int_{}^{}cos(u) du =\frac{1}{k}sen(u) +c = \frac{1}{k}sen(kx) + c.

A sua integral é com relação a t e não n{\omega}_{0}t.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59