• Anúncio Global
    Respostas
    Exibições
    Última mensagem

EDO Bernoulli - Problema com a derivada da substituição

EDO Bernoulli - Problema com a derivada da substituição

Mensagempor dileivas » Seg Abr 02, 2012 14:20

Oi gente!

Tô com uma dúvida cruel aqui. Na equação diferencial de Bernoulli, para linearizá-la tenho que fazer uma substituição do tipo:

w={y}^{1-n}

Porém, preciso derivar para concluir a linearização. Na minha cabeça, a derivada disso é:

w\prime = (1-n){y}^{-n}

Mas a resposta ainda tem um y\prime sendo multiplicado, ou seja

w\prime = (1-n){y}^{-n}y\prime

Alguém poderia me explicar de onde vem esse y\prime?

Obrigado =)
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: EDO Bernoulli - Problema com a derivada da substituição

Mensagempor MarceloFantini » Seg Abr 02, 2012 19:10

Você provavelmente tem algo como w=w(t) e y=y(t), ou seja, você tem duas funções que dependem de um outro parâmetro t, sendo que a segunda você tem uma composição de y com h(z) = z^{1-n}. Usando a regra da cadeia, você tem que (h \circ y)'(t) = h'(y(t)) \cdot y'(t) = (1-n)y^{-n} \cdot y'.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: EDO Bernoulli - Problema com a derivada da substituição

Mensagempor dileivas » Seg Abr 02, 2012 19:14

Super Obrigado! Preciso estudar melhor essa regra da cadeia! hahaha
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}