• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor rafaelbr91 » Qui Mar 29, 2012 20:50

Como acho o MENOR coeficiente angular da curva: x^3 - 4x +1 e em qual ponto ela apresenta tal coeficiente angular? Obrigado!
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Derivada]

Mensagempor rafaelbr91 » Qui Mar 29, 2012 21:09

Eu calculei a derivada dela : M = 3x² - 4
então achei o valor mínimo dessa função do 2º grau ( que corresponde ao coef. angular minimo? ) e achei Coeficiente angular minimo da tangente a curva(Mmin) é : -4
Em seguida substitui esse valor na função acima, achando: X = 0 e em seguida substitui esse x na função inicial dada, que foi x^3 - 4x + 1, obtendo o valor de y = 1
Então o ponto que a tangente que possui o coef. angular minimo tocar na curva é no ponto ( 0,1 ) e coef angular -4 ?
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Sex Mar 30, 2012 02:56

rafaelbr91 escreveu:Como acho o MENOR coeficiente angular da curva: x^3 - 4x +1 e em qual ponto ela apresenta tal coeficiente angular?


rafaelbr91 escreveu:Eu calculei a derivada dela : M = 3x² - 4
então achei o valor mínimo dessa função do 2º grau ( que corresponde ao coef. angular minimo? ) e achei Coeficiente angular minimo da tangente a curva(Mmin) é : -4
Em seguida substitui esse valor na função acima, achando: X = 0 e em seguida substitui esse x na função inicial dada, que foi x^3 - 4x + 1, obtendo o valor de y = 1
Então o ponto que a tangente que possui o coef. angular minimo tocar na curva é no ponto ( 0,1 ) e coef angular -4 ?


O seu raciocínio está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.