• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Trigonometrico

Limites Trigonometrico

Mensagempor fnolasco » Qua Mar 28, 2012 18:17

lim \frac{1-2cosx+cos2x}{x^2}, x\rightarrow0


lim \frac{6x-sen2x}{2x+3sen4x},x\rightarrow0



lim \frac{tg^3\frac{x+1}{4}}{(x+1)^3},x\rightarrow-1

Sem ser por L'Hospital ou qualquer regra de derivação, desde já agradeço
fnolasco
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 28, 2012 18:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng.Civil
Andamento: cursando

Re: Limites Trigonometrico

Mensagempor LuizAquino » Qua Mar 28, 2012 19:11

fnolasco escreveu:lim \frac{1-2cosx+cos2x}{x^2}, x\rightarrow0


Dica

1) \cos 2x = \cos (x + x) = (\cos x)(\cos x) - (\,\textrm{sen}\, x)(\,\textrm{sen}\, x) = \cos^2 x - \,\textrm{sen}\,^2 x .

2) multiplique o numerador e o denominador por 1 + \cos x .


fnolasco escreveu:lim \frac{6x-sen2x}{2x+3sen4x},x\rightarrow0


Dica

1) Divida o numerador e o denominador por 8x.

fnolasco escreveu:lim \frac{tg^3\frac{x+1}{4}}{(x+1)^3},x\rightarrow-1


Dica

1) Use a definição de tangente: \textrm{tg}\, \alpha = \frac{\textrm{sen}\,\alpha}{\cos \alpha}

Observação

Para digitar um limite use um código como:

Código: Selecionar todos
[tex]\lim_{x\to c} f(x)[/tex]


O resultado desse código é:

\lim_{x\to c} f(x)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?