• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite Trigonométrico Indeterminado

Limite Trigonométrico Indeterminado

Mensagempor cjunior94 » Dom Mar 25, 2012 22:54

Estou resolvendo alguns exercícios sobre limites trigonométricos e me deparei com uma questão que não consegui resolver:

\lim_{x->3} (x-3)*cosec(\pi*x)

No local onde encontrei esse exercício avia uma resolução, mas não consegui entender ela completamente:

\lim_{x->3} (x-3)*\frac{1}{sen(\pi*x)}

\lim_{x->3} \frac{x-3}{sen(\pi*x)}

\lim_{x->3} \frac{-1*(3-x)*\pi}{\pi*sen[\pi*(3-x)]}

Sendo:

sen(\pi*x)=Sen(3*\pi-\pi*x)=sen[\pi*(3-x)]


Consegui perceber que ocorreu uma multiplicação por \pi na fracão e também que foi colocado o -1 em evidencia, mas não consegui entender a afirmação que: sen(\pi*x)=Sen(3*\pi-\pi*x)
Editado pela última vez por cjunior94 em Seg Mar 26, 2012 01:07, em um total de 1 vez.
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite Trigonométrico Indeterminado

Mensagempor Fabio Wanderley » Seg Mar 26, 2012 00:55

cjunior94 escreveu:sen(\pi*x)=Sen(3*\pi-\pi*x)=sen[\pi*(3-x)]


Consegui perceber que ocorreu uma multiplicação por \pi na fracão e também que foi colocado o -1 em evidencia, mas não consegui entender a afirmação que: sen(\pi*x)=Sen(3*\pi-\pi*x)


Foi usada a relação sen(a - b) = sen(a).cos(b) - sen(b).cos(a).

Mas como terminou a resolução desse limite?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Limite Trigonométrico Indeterminado

Mensagempor cjunior94 » Seg Mar 26, 2012 01:12

Mesmo após você falar que foi usada a formula de diferença de senos eu não consegui identificar o que foi realmente feito. Pode me explicar detalhadamente?

Logo após:

\lim_{x->3} \frac{-1*(3-x)*\pi}{\pi*sen[\pi*(3-x)]}

já foi colocada a resposta : \frac{-1}{\pi}
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite Trigonométrico Indeterminado

Mensagempor LuizAquino » Seg Mar 26, 2012 01:21

cjunior94 escreveu:Mesmo após você falar que foi usada a formula de diferença de senos eu não consegui identificar o que foi realmente feito. Pode me explicar detalhadamente?


Aplique a fórmula do seno da diferença:

\textrm{sen}\,(3\pi - \pi x) = \,\textrm{sen}\,3\pi \cos \pi x - \,\textrm{sen}\,\pi x \cos 3\pi

Agora responda as perguntas abaixo.

1) Qual é o valor de \,\textrm{sen}\,3\pi ?

2) Qual é o valor de \cos 3\pi ?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.