por Jorge Dias » Sáb Jan 07, 2012 01:08

mostre, que

penso que tenho que achar as derivadas parciais,ou seja será que devo de achar o meu A como

e o B, como

e apartir dai obter

mas não sei como fazer essa derivada e nem o que fazer com a icógnita que está antes da fracção
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por ant_dii » Sáb Jan 07, 2012 02:29
Jorge Dias escreveu:
mostre, que

penso que tenho que achar as derivadas parciais,ou seja será que devo de achar o meu A como

e o B, como

e apartir dai obter

mas não sei como fazer essa derivada e nem o que fazer com a icógnita que está antes da fracção
Se

então você terá que usar a regra da cadeia, pois

está em função de

por

... E se

, então você terá que calcular cada derivada em função de uma incógnita de cada vez e depois multiplicar como esta pedindo acima e então procurar uma relação que de zero pra você mostrar o resultado desejado...
O que quero dizer é que do modo que esta escrito acima esta confuso... Quem são estes A, B e C que você fala e o

de

, é da onde?
O que pede na fórmula é só que você faça as derivadas (regra da cadeia) em relação a cada variável e depois verifique o resultado quando você multiplica a derivada com a variável.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Jorge Dias » Sáb Jan 07, 2012 10:36
No livro tenho um exemplo que refere assim, sejam A e B as váriáveis mudas associadas á função G, ou seja U= G(A;B)= G

e então pela regra da cadeia temos

e assim sucessivamente para as outras icógnitas y e z é isso o que se pretende? mas não consigo iniciar estas derivadas.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por ant_dii » Sáb Jan 07, 2012 13:02
Jorge Dias escreveu:No livro tenho um exemplo que refere assim, sejam A e B as váriáveis mudas associadas á função G, ou seja U= G(A;B)= G

e então pela regra da cadeia temos

e assim sucessivamente para as outras icógnitas y e z é isso o que se pretende? mas não consigo iniciar estas derivadas.
Seguindo o que está em seu livro, temos que


Então, mantenha

e faça

,

e

.
Mantenha

e faça

,

e

.
Por exemplo,

Em seguida, multiplique o resultado, como esta pedindo acima, por cada variável. Fazendo então uma manipulação algébrica você verá que o resultado será zero independente da derivada parcial de

.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Jorge Dias » Sáb Jan 07, 2012 14:55
pode me explicar porque não está fácil de entender para mim como fez a conta

,não consigo chegar a esse valor
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por ant_dii » Sáb Jan 07, 2012 15:19
Sim... me desculpe.
A derivada de

pode ser feita como segue, o mesmo valerá para as outras variáveis e para

:

Quando você deriva em relação a variável precedente as outras se tornam constantes, mas vale as mesmas regras para derivadas com uma variável...
Não sei se esclareceu, mas fique a vontade qualquer dúvida...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Jorge Dias » Sáb Jan 07, 2012 15:35
muito obrigado pelo esclarecimento e sua disponibilidade.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por Jorge Dias » Sáb Jan 07, 2012 20:48
muito obrigada pela ajuda, mas realmente não chego lá e não consigo fazer as contas de derivadas, estou a tentar mas ao calcular oa variável z empacou e não vai lá, e enquanto eu não conseguir fazer as derivadas bem não vou conseguir fazer este tipo de exercicios, percebo o que se pretende e não sei fazer as contas.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por ant_dii » Seg Jan 09, 2012 02:12
ant_dii escreveu:Sim... me desculpe.
A derivada de

pode ser feita como segue, o mesmo valerá para as outras variáveis e para

:

Quando você deriva em relação a variável precedente as outras se tornam constantes, mas vale as mesmas regras para derivadas com uma variável...
Não sei se esclareceu, mas fique a vontade qualquer dúvida...
Vamos lá, que vou te ajudar então.
Para calcular a derivada de

em relação a

será usado o mesmo procedimento que foi em relação a

(como esta na citação acima), ou seja,

Para calcular

em relação a

, é feito o seguinte

De outra forma, pode-se fazer o seguinte

isso, pois como estamos derivando em relação a

, como já te disse, as outras variáveis se tornam constantes, então

e

também são constantes.
Em relação a

, você encontrará os seguintes resultados:



A partir daqui basta você fazer as derivadas de

em relação a cada variável usando os resultados já encontrados:



Agora entra a parte de manipulação. Quando você mexer certinho multiplicando pela variável precedente você obterá o resultado desejado...
Estamos ae qualquer coisa
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Jorge Dias » Seg Jan 09, 2012 10:17
Muito agredecido pela ajuda prestada já cheguei ao resultado, tambem quase que me fez o exercicio todo, sua ajuda foi preciosa, consegui entender, é conta que nunca mais acaba.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por ant_dii » Ter Jan 10, 2012 00:16
Que nada... Foi bom te ajudar...
Quanto as contas, aprendi uma coisa: Matemática é 95% trabalho e 5% inteligência. Então existe muito trabalho a se fazer e muita pratica também ajudará...
Qualquer dúvida disponha...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função diferencial
por baianinha » Qua Jun 29, 2011 22:43
- 3 Respostas
- 1802 Exibições
- Última mensagem por LuizAquino

Ter Jul 05, 2011 17:58
Cálculo: Limites, Derivadas e Integrais
-
- Diferencial de uma função com várias variáveis
por Fernandobertolaccini » Qui Dez 25, 2014 18:16
- 2 Respostas
- 1628 Exibições
- Última mensagem por Russman

Sáb Dez 27, 2014 00:21
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial não-linear de função composta
por Sally » Ter Fev 28, 2017 17:37
- 0 Respostas
- 2620 Exibições
- Última mensagem por Sally

Ter Fev 28, 2017 17:37
Cálculo: Limites, Derivadas e Integrais
-
- [Diferencial] Diferencial total
por temujin » Qua Mai 29, 2013 17:10
- 2 Respostas
- 1173 Exibições
- Última mensagem por temujin

Ter Out 21, 2014 17:17
Cálculo: Limites, Derivadas e Integrais
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 11920 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.