• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Integral] Mudança de variável

[Cálculo Integral] Mudança de variável

Mensagempor VFernandes » Ter Jan 03, 2012 23:47

Caros amigos,

Estou enfrentando um problema de integração, onde tenho que calcular uma integral definida através de um método numérico chamado de Método de Romberg. Tudo é bem mecânico quando a função é bem comportada no intervalo de integração, mas quando me deparo com o exemplo:

\int_0^{\pi/2} \sqrt[]{x}*cos(x) dx

não consigo integrar pois a derivada da função no ponto 0 tende ao infinito. Nesse caso, tenho que usar um macete, e fazer a mudança de variável x = y^2. Dessa forma, a integral fica regularizada e o método funciona.

Agora vem a zica. Dada a integral:

\int_0^1 \frac{cos(x)}{\sqrt[]{x(1-x)}} dx

Eu não consigo achar, de jeito nenhum, uma mudança de variável que regularize a função e me permita fazer a integração numérica.

Alguém tem uma luz? Já tentei x = y^2, x = \sqrt[]{y}, x = sen(y) e nada funcionou...

Profundamente agradecido,
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [Cálculo Integral] Mudança de variável

Mensagempor fraol » Qui Jan 05, 2012 08:53

Bom dia,

Também tentei algumas alternativas de substituição sem sucesso. Usando integração por partes caímos numa recorrência. Pesquisando na net achei esse post http://www.artofproblemsolving.com/Forum/viewtopic.php?f=296&t=452952 que trata a solução via a equação de Bessel. Isto é faz-se uma substituição conveniente de forma a recair numa equação de Bessel.
Outra maneira de resolver seria transformar a função dada numa série de Taylor em torno de 0 por exemplo, pegar um número pequeno de termos e então calcular a integral o que vai dar uma boa aproximação.

Vou estudar o Método de Romberg.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Cálculo Integral] Mudança de variável

Mensagempor VFernandes » Qui Jan 05, 2012 23:32

Caros amigos, problema resolvido!
Vejam esse artigo (em especial o terceiro capítulo): http://faculty.smu.edu/shampine/MA5315/SingQuad.pdf
Encontrei duas soluções para o problema:

1)
Se dividirmos a integral em duas, uma de 0 a 0.5 e outra de 0.5 a 1, poderemos trabalhar com uma singularidade de cada vez e aí basta fazermos:
(1ª integral) x = y^2 e a função fica f(y) = 2*\frac{cos(y^2)}{\sqrt[]{1-y^2}} que é regular no intervalo de integração desejado ([0,\sqrt[]{1/2}]).
(2ª integral) x = y^2 + 1 e a função fica f(y) = 2*\frac{cos(1-y^2)}{\sqrt[]{1-y^2}} que também é regular no intervalo desejado ([0,\sqrt[]{1/2}]).

2)
Essa é ainda mais fácil.
Se fizermos a substituição x = sen^2(y), a função ficará da forma f(y) = 2cos(sen(y)) que é perfeitamente regular e facilmente integravel no intervalo [0,\pi/2].

Abraços,
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D