Estou enfrentando um problema de integração, onde tenho que calcular uma integral definida através de um método numérico chamado de Método de Romberg. Tudo é bem mecânico quando a função é bem comportada no intervalo de integração, mas quando me deparo com o exemplo:
não consigo integrar pois a derivada da função no ponto 0 tende ao infinito. Nesse caso, tenho que usar um macete, e fazer a mudança de variável
. Dessa forma, a integral fica regularizada e o método funciona.Agora vem a zica. Dada a integral:
![\int_0^1 \frac{cos(x)}{\sqrt[]{x(1-x)}} dx \int_0^1 \frac{cos(x)}{\sqrt[]{x(1-x)}} dx](/latexrender/pictures/0591327d52246a8d4ccf1e6579e8c669.png)
Eu não consigo achar, de jeito nenhum, uma mudança de variável que regularize a função e me permita fazer a integração numérica.
Alguém tem uma luz? Já tentei
e nada funcionou...Profundamente agradecido,


que é regular no intervalo de integração desejado (
).
e a função fica
que também é regular no intervalo desejado (
, a função ficará da forma
que é perfeitamente regular e facilmente integravel no intervalo
.
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.