• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Integral] Mudança de variável

[Cálculo Integral] Mudança de variável

Mensagempor VFernandes » Ter Jan 03, 2012 23:47

Caros amigos,

Estou enfrentando um problema de integração, onde tenho que calcular uma integral definida através de um método numérico chamado de Método de Romberg. Tudo é bem mecânico quando a função é bem comportada no intervalo de integração, mas quando me deparo com o exemplo:

\int_0^{\pi/2} \sqrt[]{x}*cos(x) dx

não consigo integrar pois a derivada da função no ponto 0 tende ao infinito. Nesse caso, tenho que usar um macete, e fazer a mudança de variável x = y^2. Dessa forma, a integral fica regularizada e o método funciona.

Agora vem a zica. Dada a integral:

\int_0^1 \frac{cos(x)}{\sqrt[]{x(1-x)}} dx

Eu não consigo achar, de jeito nenhum, uma mudança de variável que regularize a função e me permita fazer a integração numérica.

Alguém tem uma luz? Já tentei x = y^2, x = \sqrt[]{y}, x = sen(y) e nada funcionou...

Profundamente agradecido,
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [Cálculo Integral] Mudança de variável

Mensagempor fraol » Qui Jan 05, 2012 08:53

Bom dia,

Também tentei algumas alternativas de substituição sem sucesso. Usando integração por partes caímos numa recorrência. Pesquisando na net achei esse post http://www.artofproblemsolving.com/Forum/viewtopic.php?f=296&t=452952 que trata a solução via a equação de Bessel. Isto é faz-se uma substituição conveniente de forma a recair numa equação de Bessel.
Outra maneira de resolver seria transformar a função dada numa série de Taylor em torno de 0 por exemplo, pegar um número pequeno de termos e então calcular a integral o que vai dar uma boa aproximação.

Vou estudar o Método de Romberg.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Cálculo Integral] Mudança de variável

Mensagempor VFernandes » Qui Jan 05, 2012 23:32

Caros amigos, problema resolvido!
Vejam esse artigo (em especial o terceiro capítulo): http://faculty.smu.edu/shampine/MA5315/SingQuad.pdf
Encontrei duas soluções para o problema:

1)
Se dividirmos a integral em duas, uma de 0 a 0.5 e outra de 0.5 a 1, poderemos trabalhar com uma singularidade de cada vez e aí basta fazermos:
(1ª integral) x = y^2 e a função fica f(y) = 2*\frac{cos(y^2)}{\sqrt[]{1-y^2}} que é regular no intervalo de integração desejado ([0,\sqrt[]{1/2}]).
(2ª integral) x = y^2 + 1 e a função fica f(y) = 2*\frac{cos(1-y^2)}{\sqrt[]{1-y^2}} que também é regular no intervalo desejado ([0,\sqrt[]{1/2}]).

2)
Essa é ainda mais fácil.
Se fizermos a substituição x = sen^2(y), a função ficará da forma f(y) = 2cos(sen(y)) que é perfeitamente regular e facilmente integravel no intervalo [0,\pi/2].

Abraços,
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59