por Marcio Cristo » Qui Dez 22, 2011 18:35
Boa tarde , como ficaria a seguinte integral? A minha duvida é por onde começar e como ficaria a fatoração do polinomio que está no denominador . Se puder fazer um passo a passo . Agradeço desde ja .

-
Marcio Cristo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Dez 22, 2011 18:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Qui Dez 22, 2011 22:01
Marcio Cristo escreveu:Boa tarde , como ficaria a seguinte integral? A minha duvida é por onde começar e como ficaria a fatoração do polinomio que está no denominador . Se puder fazer um passo a passo . Agradeço desde ja.

Para estudar a resolução dessa integral, siga o procedimento abaixo.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate (x+4)/(x^2+2x+5) dx
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução e comparar com a sua.
ObservaçãoSe você desejar revisar as técnicas de integração, então eu gostaria de recomendar que você assista as vídeo-aulas disponíveis em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Marcio Cristo » Qui Dez 22, 2011 22:23
Boa noite, obrigado pelo feeedback , Luiz , noto que x+4/x^2+2x+5 foi reescrito na forma de 2x+2 / 2( x^2+2x+5) + 3/x^2+2x+5 , qual a tecnica usada para essa transformação de polinomios ??? como ele chegou a tal ???
-
Marcio Cristo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Dez 22, 2011 18:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por Marcio Cristo » Sex Dez 23, 2011 17:36
entendi , agora , qual a finalidade de ter multiplicado a primeira expressão toda por 2 ?? não poderia integrar com aquele polinomio x+1 ??
-
Marcio Cristo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Dez 22, 2011 18:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Sex Dez 23, 2011 18:00
Marcio Cristo escreveu:qual a finalidade de ter multiplicado a primeira expressão toda por 2 ?? não poderia integrar com aquele polinomio x+1 ??
A finalidade foi de "facilitar" o uso da integração por substituição.
Note que fazendo

e

, temos que :

Obviamente, também poderíamos utilizar essa mesma substituição sem usar esse artifício de multiplicar a priori por 2.
Note que podemos reescrever

como sendo

. Nesse caso, podemos escrever diretamente que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Técnicas de integração
por Victor Mello » Seg Nov 18, 2013 23:04
- 2 Respostas
- 1548 Exibições
- Última mensagem por Victor Mello

Ter Nov 19, 2013 00:16
Cálculo: Limites, Derivadas e Integrais
-
- [tecnicas de integraçao por partes (u)(dv)]
por menino de ouro » Ter Out 30, 2012 18:21
- 3 Respostas
- 1954 Exibições
- Última mensagem por MarceloFantini

Ter Out 30, 2012 22:39
Cálculo: Limites, Derivadas e Integrais
-
- [Tecnicas de integraçao por substiuiçao simples]
por menino de ouro » Qua Out 24, 2012 16:12
- 1 Respostas
- 1411 Exibições
- Última mensagem por young_jedi

Qua Out 24, 2012 16:51
Cálculo: Limites, Derivadas e Integrais
-
- Técnicas de integração - multiplicando pelo fator unitário
por Victor Mello » Qui Nov 21, 2013 18:37
- 2 Respostas
- 1598 Exibições
- Última mensagem por Victor Mello

Qui Nov 21, 2013 23:27
Cálculo: Limites, Derivadas e Integrais
-
- [ Inequaçoes Quadráticas-Técnicas]
por R0nny » Qua Mai 01, 2013 17:02
- 0 Respostas
- 991 Exibições
- Última mensagem por R0nny

Qua Mai 01, 2013 17:02
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.