• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida. Como resolver?

Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Sex Nov 25, 2011 22:54

Olá a todos,

Estou precisando de uma dica sobre como resolver a integral \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}. Sei que a resposta é ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C, mas não sei como chegar a essa expressão. Desde já agradeço a atenção dispensada por todos.
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor LuizAquino » Sáb Nov 26, 2011 08:05

Cristiano Tavares escreveu:Estou precisando de uma dica sobre como resolver a integral \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}. Sei que a resposta é \ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C, mas não sei como chegar a essa expressão


Para conferir a resolução, siga os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate 1/sqrt(u^2 - a^2) du
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Sáb Nov 26, 2011 08:56

Luiz Aquino,

Obrigado pela resposta, o site indicado por você é excelente. Resolvi a integral, mas ainda ficou uma dúvida. Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso. Resolvi a integral sozinho e encontrei como resposta \frac{1}{a}ln\left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|.

Obrigado e um abraço,

Cristiano Tavares
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor LuizAquino » Sáb Nov 26, 2011 16:14

Cristiano Tavares escreveu:Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso.


Eis o final que aparece no site:

(...)

= \log\left(\frac{u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)}{a}\right)+\textrm{constant}

Which is equivalent for restricted u and a values to:

= \log \left(\sqrt{u^2-a^2}+u\right)+\textrm{constant}

----------
\log (x) is the natural logarithm.


Fazendo a restrição a > 0 e usando as propriedades de logaritmos, temos que:

= \log \left(u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)\right) - \log a + \textrm{constant}

Note que a expressão - \log a + \textrm{constant} representa uma outra constante real. Vamos chamar essa outra constante de c. Sendo assim, temos que:

= \log \left(u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)\right) + c

Efetuando a subtração que há dentro da raiz, temos que:

= \log \left(u \left(\sqrt{\frac{u^2 - a^2}{u^2}}+1\right)\right) + c

Fazendo a restrição u > a (lembrando que já fizemos também a restrição a > 0), temos que:

= \log \left(u \left(\frac{\sqrt{u^2 - a^2}}{u}+1\right)\right) + c

= \log \left(\sqrt{u^2 - a^2}+u\right)\right) + c

Cristiano Tavares escreveu: Resolvi a integral sozinho e encontrei como resposta \frac{1}{a}\ln\left|u + \sqrt{{u}^{2}-{a}^{2}} \right|.


Não está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Qua Nov 30, 2011 15:32

Luiz Aquino,

Agora eu entendi, muito obrigado pela ajuda!

Cristiano Tavares
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}