• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida. Como resolver?

Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Sex Nov 25, 2011 22:54

Olá a todos,

Estou precisando de uma dica sobre como resolver a integral \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}. Sei que a resposta é ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C, mas não sei como chegar a essa expressão. Desde já agradeço a atenção dispensada por todos.
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor LuizAquino » Sáb Nov 26, 2011 08:05

Cristiano Tavares escreveu:Estou precisando de uma dica sobre como resolver a integral \int_{}^{}du / \sqrt[2]{{u}^{2}-{a}^{2}}. Sei que a resposta é \ln \left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|+C, mas não sei como chegar a essa expressão


Para conferir a resolução, siga os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate 1/sqrt(u^2 - a^2) du
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Sáb Nov 26, 2011 08:56

Luiz Aquino,

Obrigado pela resposta, o site indicado por você é excelente. Resolvi a integral, mas ainda ficou uma dúvida. Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso. Resolvi a integral sozinho e encontrei como resposta \frac{1}{a}ln\left|u + \sqrt[2]{{u}^{2}-{a}^{2}} \right|.

Obrigado e um abraço,

Cristiano Tavares
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor LuizAquino » Sáb Nov 26, 2011 16:14

Cristiano Tavares escreveu:Na demonstração do site, ao final aparece o logaritmo ln todo dividido por "a", e aí é dito que para valores restritos de "u" e "a", esse "a" pode ser eliminado da expressão, não entendi o porquê disso.


Eis o final que aparece no site:

(...)

= \log\left(\frac{u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)}{a}\right)+\textrm{constant}

Which is equivalent for restricted u and a values to:

= \log \left(\sqrt{u^2-a^2}+u\right)+\textrm{constant}

----------
\log (x) is the natural logarithm.


Fazendo a restrição a > 0 e usando as propriedades de logaritmos, temos que:

= \log \left(u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)\right) - \log a + \textrm{constant}

Note que a expressão - \log a + \textrm{constant} representa uma outra constante real. Vamos chamar essa outra constante de c. Sendo assim, temos que:

= \log \left(u \left(\sqrt{1-\frac{a^2}{u^2}}+1\right)\right) + c

Efetuando a subtração que há dentro da raiz, temos que:

= \log \left(u \left(\sqrt{\frac{u^2 - a^2}{u^2}}+1\right)\right) + c

Fazendo a restrição u > a (lembrando que já fizemos também a restrição a > 0), temos que:

= \log \left(u \left(\frac{\sqrt{u^2 - a^2}}{u}+1\right)\right) + c

= \log \left(\sqrt{u^2 - a^2}+u\right)\right) + c

Cristiano Tavares escreveu: Resolvi a integral sozinho e encontrei como resposta \frac{1}{a}\ln\left|u + \sqrt{{u}^{2}-{a}^{2}} \right|.


Não está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral indefinida. Como resolver?

Mensagempor Cristiano Tavares » Qua Nov 30, 2011 15:32

Luiz Aquino,

Agora eu entendi, muito obrigado pela ajuda!

Cristiano Tavares
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.