• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada e composta]

[Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:26

Estou com alguma pressa em saber a resolução de um exercicio que saiu numa frequencia de analise do ano passado na universidade que frequento.

Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1\;\;\;\;\;\;g(x)= 2\sqrt[2]{x-4}

O que fiz foi:
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

[2(\frac{1}{2} * {x-4}^{\frac{-1}{2}} * (x-4)'\:]

Alguem me pode ajudar a entender como se faz a derivada com raiz?
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor Saruka » Sex Nov 11, 2011 18:33

Na parte do
3({2\sqrt[2]{x-4}}^{2}) = 3 [4(x-4)] = 12x-48

o está tudo elevado ao quadrado excepto o 3
Saruka
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 11, 2011 18:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em engenharia informatica
Andamento: cursando

Re: [Derivada e composta]

Mensagempor LuizAquino » Qui Nov 17, 2011 17:18

Saruka escreveu:Calcule, usando o Teorema da derivada da funçao composta (fog)' (6)

f(x)={x}^{3} +1

g(x)= 2\sqrt{x-4}


Saruka escreveu:O que fiz foi:
3\left(2\sqrt{x-4}\right)^{2} = 3 [4(x-4)] = 12x-48

Desde que x-4 > 0, você pode fazer essa simplificação. No caso geral, o correto seria usar módulo:

3\left(2\sqrt{x-4}\right)^{2} = 3 (4|x-4|) = |12x-48|

Saruka escreveu:Chegando à parte em que tenho que fazer a derivada de g empanquei mesmo. Fiz:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime


Você está no caminho certo. Basta continuar:

2\cdot \frac{1}{2} \cdot \left(x-4\right)^{\frac{-1}{2}} \cdot (x-4)^\prime =

= 1 \cdot \frac{1}{\left(x-4\right)^{\frac{1}{2}}} \cdot 1

= \frac{1}{\sqrt{x-4}}

Observação

Note que você não precisa necessariamente encontrar a expressão para (fog)' (x). Afinal de contas, o exercício pede apenas (fog)' (6).

Utilizando a regra da cadeia, você sabe que (fog)' (x) = f'(g(x))g'(x). Basta então calcular f'(g(6))g'(6).

Note que:

g(6)= 2\sqrt{6-4} = 2\sqrt{2}

f^\prime (x)=3x^2 \Rightarrow f^\prime (g(6)) = 3[g(6)]^2 \Rightarrow f^\prime \left(2\sqrt{2}\right) = 24

g^\prime(x)= \frac{1}{\sqrt{x-4}} \Rightarrow g^\prime (6) = \frac{1}{\sqrt{2}}

Sendo assim, temos que:

(f\circ g)^\prime(6) = f^\prime(g(6))g^\prime(6) = \frac{24}{\sqrt{2}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59