• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] RESOLUÇÃO DE LIMITE

[LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor beel » Sex Set 02, 2011 16:19

PRA RESOLVER UM LIMITE, PRIMEIRO VC TENTA SUBSTITUIR O a em x...MAS SE O DENOMINADOR DER ZERO ( NAO O +/-)TEM QUE FATORAR CERTO?
MAS NESSE CASO, COMO EU RESOLVO?

lim x³+1/x+ 1
x TENDE a -1
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor Neperiano » Sex Set 02, 2011 16:55

Ola

Usa a regra de L'Hopital

Derive emcima e embaixo separadamente, e tente fazer o limite denovo

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor beel » Sex Set 02, 2011 17:04

QUE REGRA É ESSA? HAHA
NAO APRENDI A DERIVAR AINDA, TEM OUTRO JEITO DE RESOLVER?
POR ALGUMA FATORAÇÃO?
A UNICA QUE EU SEI QUE ENVOLVE CUBO, É A DA DIFERENÇA DE CUBOS, MAS NENHUMA RELATIVA A SOMA
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor LuizAquino » Sex Set 02, 2011 17:24

Use o produto notável:

a^3 + b^3 = (a + b)\left(a^2 -ab + b^2\right)

Outra alternativa seria simplesmente efetuar a divisão entre os polinômios. Se você não se recorda como efetuar essa divisão, então eu recomendo que você revise esse conteúdo.

Observação
Para escrever limites em suas mensagens, use o botão "tex" disponível durante a edição. Por exemplo, para o limite que você enviou basta digitar o comando:
Código: Selecionar todos
[tex]
\lim_{x\to -1} \frac{x^3 + 1}{x + 1}
[/tex]


O resultado desse comando após enviar sua mensagem seria:

\lim_{x\to -1} \frac{x^3 + 1}{x + 1}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor beel » Sex Set 02, 2011 17:47

NAO CONHECIA ESSA FORMULA DA SOMA DE DOIS CUBOS,
POR ELA, ACHO QUE CONSEGUIR RESOLVER, MEU LIMITE DEU 3
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor beel » Sex Set 02, 2011 17:48

A FORMULA DO POLINOMIO NAO É APENAS QUANDO O X TENDE AO INFINITO?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor LuizAquino » Sex Set 02, 2011 18:04

isanobile escreveu:ACHO QUE CONSEGUIR RESOLVER, MEU LIMITE DEU 3

Ok. Esse é o valor.

isanobile escreveu:A FORMULA DO POLINOMIO NAO É APENAS QUANDO O X TENDE AO INFINITO?

Você está se referindo a estratégia de dividir os polinômios? Se for isso, a resposta é não.

Veja que -1 é raiz tanto de d(x) = x³ + 1 quanto de n(x) = x + 1. Do conhecimento sobre divisão de polinômios, sabemos que isso significa que x³ + 1 é divisível por x + 1. Se você efetuar a divisão, então obtém:

\left(x^3 + 1\right) \div (x+1) = x^2 - x + 1

Em notação de fração, temos que:

\frac{x^3 + 1}{x+1} = x^2 - x + 1

Veja que aplicando o conhecimento sobre divisão entre polinômios não é necessário gravar os produtos notáveis.

Entretanto é natural que com a prática acabamos gravando uma porção de produtos notáveis.

Observação
Por favor, não digite suas mensagens usando apenas caixa alta, isto é, com todas as letras em maiúsculo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] RESOLUÇÃO DE LIMITE

Mensagempor beel » Dom Out 16, 2011 17:00

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D