• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolver por EDO calculoII

Resolver por EDO calculoII

Mensagempor maykonnunes » Seg Set 19, 2011 11:07

Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. Quando a produçãao do poço atingirá um quinto de seu valor atual? (Resolva usando EDO)

Estou sem idéia de inicio acho que me falta interpretação
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Resolver por EDO calculoII

Mensagempor LuizAquino » Seg Set 19, 2011 11:21

maykonnunes escreveu:Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. (...)

Seja P(t) a quantidade de petróleo no tempo t. Desse modo, temos que:

\frac{dP}{dt} = 0,9P

maykonnunes escreveu:(...) Quando a produçãao do poço atingirá um quinto de seu valor atual?

Suponha que P(0) = P_0 . Você deseja calcular o tempo t tal que P(t) = \frac{P_0}{5} .

maykonnunes escreveu:Estou sem idéia de inicio acho que me falta interpretação

De fato, interpretação foi o que faltou. *-)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Resolver por EDO calculoII

Mensagempor maykonnunes » Seg Set 19, 2011 12:45

LuizAquino, de f ( y) y ' = g(x) , usando a forma dy/dx=y´ segue que f ( y)dy = g(x)dx
não estou conseguindo identificar os termos para integrar
se puder dar mais uma mão fico agradecido.
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Resolver por EDO calculoII

Mensagempor LuizAquino » Seg Set 19, 2011 16:47

maykonnunes escreveu:não estou conseguindo identificar os termos para integrar


Note que:

\frac{dP}{dt} = 0,9P

\frac{1}{0,9P}dP = dt

\int \frac{1}{0,9P}dP = \int dt
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Resolver por EDO calculoII

Mensagempor maykonnunes » Ter Set 20, 2011 15:08

Luiz, bom acho que entedi algumas coisas, se eu pensar em uma PG onde primerio termo Po razao 0,9 f(t)= P.{0,9}^{t} , então P é constante {0,9}^{t-1} é a váriavel, mas não consigo colocar está ideia em EDO.

Ou seja a ideia é assim: f(t)=\int_{0}^{t}Po.{0,9}^{t-1}
ai basta resolver a integral??
e fazer \frac{Po}{5}=\int_{0}^{t}Po.{0,9}^{t-1} ??
encontro a solução??
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Resolver por EDO calculoII

Mensagempor MarceloFantini » Ter Set 20, 2011 18:37

Não necessariamente é uma progressão geométrica. Resolva a integral e use as informações que o colega Luiz Aquino te indicou.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolver por EDO calculoII

Mensagempor maykonnunes » Ter Set 20, 2011 19:33

"LuizAquino disse
Note que:

\int \frac{1}{0,9P}dP = \int dt

Bom resolvendo tenho:
\frac{10log(p)}{9}=t
proximo passo??
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Resolver por EDO calculoII

Mensagempor MarceloFantini » Ter Set 20, 2011 19:40

Não se esqueça da constante. \frac{10}{9} \cdot \ln P = t+C_1 \implies \ln P = \frac{9(t+C_1)}{10} \implies P(t) = e^{\frac{9t}{10} + C}. Lembre-se que P(0) = P_0, que é a quantidade inicial. Depois disso, faça P(t) = \frac{P_0}{5} e encontre t.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolver por EDO calculoII

Mensagempor maykonnunes » Qua Set 21, 2011 00:13

Segundo meu tutor \frac{dt}{dp}=-0,9t.Po ai fica P(t)=Po.{e}^{-0,9t} , ai então \frac{Po}{5}=Po.{e}^{-0,9t} que: \frac{1}{5}={e}^{-0,9t} ai daqui para frente não consigo mais solucionar
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59