• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite complicado

Limite complicado

Mensagempor Piva » Qui Jun 30, 2011 18:29

Alguem pode me ajudar com o limite:
\lim_{x\rightarrow+\infty}\frac{x}{{e}^{{x}^{2}}}
e
\lim_{x\rightarrow-\infty}\frac{x}{{e}^{{x}^{2}}}


Eu faço o l'hospital mas continua a dar uma indeterminação....

podem me ajudar?

obrigado!
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Limite complicado

Mensagempor ant_dii » Qui Jun 30, 2011 19:48

Quando você aplica L'hospital, o limite fica

\lim_{x\rightarrow\infty}\frac{1}{2x e^{x^2}}=\frac{1}{\lim_{x\rightarrow\infty}2x e^{x^2}}=\frac{1}{2(\lim_{x\rightarrow\infty}x) (\lim_{x\rightarrow\infty} e^{x^2})}=0.

Da mesma forma quando x\rightarrow -\infty, \frac{x}{e^{x^2}}\rightarrow 0.
Espero ter ajudado.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limite complicado

Mensagempor MarceloFantini » Qui Jun 30, 2011 19:52

Vamos aplicar L'Hospital na primeira:

\lim_{x \to \infty} \frac{x}{e^{x^2}} = \lim_{x \to \infty} \frac{1}{e^{x^2} \cdot 2x}

Note que aqui já não há mais indeterminação, pois o numerador é constante e o denominador vai para infinito, logo o limite é zero.

No segundo limite, você chegará ao mesmo resultado, porém note que você terá menos infinito vezes mais infinito que é menos infinito, mas também zera.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite complicado

Mensagempor Claudin » Sex Jul 01, 2011 03:55

Seria o mesmo limite representado neste tópico ou não?

viewtopic.php?f=120&t=5270
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite complicado

Mensagempor Piva » Sáb Jul 02, 2011 19:30

Não claudin, no seu topico não tem o e. Era isso mesmo, não tinha percebido minha falha ao fazer o l'hospital.

obrigado
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Limite complicado

Mensagempor Fabio Cabral » Dom Jul 03, 2011 02:38

Piva,
Costumo analisar esse tipo de questão antes de fazer qualquer cálculo. Verificar indeterminação (se há), tipo de indeterminação, se é contínua ou descontínua no ponto (etc), enfim..
Isso ajuda a determinar qual propriedade será mais vantajosa aplicar para resolver.

Fica a dica!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.