• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada x^(x^senx)

derivada x^(x^senx)

Mensagempor paula luna » Ter Jun 07, 2011 15:15

Oi!
Meu professor fez essa derivada no quadro mas nao intendi nada... alguem pode me explicar?!

F(x) = {x}^{{x}^{senx}}

Tipo ele fez por regra da cadeia mas primeiro ele pôs a funçao com exponencial assim:

F(x) = {e}^{ln({x}^{({x}^{senx})})}

eu sei que essa funçao e^ln ... é a mesma coisa que a funçao la em cima, no entanto nao intendo no que isso ajuda pra fazer a questao e consequentemente isso confundiu todo resto da questao. Tentei fazer normal por regra da cadeia mas o resultado fico algo estranho e longe da resposta que ele (professor) chegou. Desculpe os varios erros de gramatica... tava com pressa xD.

:y: pra quem leu !! e :y: :y: pra quem leu e respondeu :-D
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: derivada x^(x^senx)

Mensagempor LuizAquino » Ter Jun 07, 2011 18:26

Considere que y = f(x)^{g(x)}, com f(x) > 0.

Lembrando-se das propriedades de logaritmos, sabemos que e^{\ln a} = a e que \ln a^n = n\ln a.

Desse modo, temos que y = e^{\ln f(x)^{g(x)}} = e^{g(x)\ln f(x)} .

Considerando que f e g são diferenciáveis em um mesmo domínio, derivando ambos os membros dessa equação temos que:

y^\prime =  \left[e^{g(x)\ln f(x)}\right]^\prime = \left[g(x)\ln f(x)\right]^\prime e^{g(x)\ln f(x)} = \left[g(x)\ln f(x)\right]^\prime f(x)^{g(x)}} . (Lembrete: pela Regra da Cadeia, temos que [e^u]^\prime = u^\prime e^u .)

Desse modo, temos uma regra geral para esses casos: \left[f(x)^{g(x)}\right]^\prime = \left[g(x)\ln f(x)\right]^\prime f(x)^{g(x)} .

No exercício, temos F(x) = x^{x^{\textrm{sen}\,x}}. Fazendo f(x) = x e g(x) = x^{\textrm{sen}\,x} temos que F(x) = f(x)^{g(x)}. Agora basta aplicar a regra acima.

Note que será necessário derivar a função g. Fazendo \overline{f}(x) = x e \overline{g}(x) = \textrm{sen}\,x temos que g(x) = \overline{f}(x)^{\overline{g}(x)}. Daí basta aplicar a regra novamente para essa função.

paula luna escreveu:Desculpe os varios erros de gramatica... tava com pressa xD.

Procure ter mais cuidado da próxima vez. É ruim ler algo como "intender". *-)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: derivada x^(x^senx)

Mensagempor paula luna » Ter Jun 07, 2011 21:21

Ok, otimo! consegui fazer facilmente a questao seguindo os passos, porem continuo com 2 duvidas:

1ª) quando é dito "...temos uma regra geral para esses casos..." , que casos sao estes?

2ª) Por que nao pode ser feito a regra da cadeia tomando o expoente x^senx como um 'u' e fazendo x^u ?

Eu realmente nao vejo o porquê de usar toda aquela historia de logaritmo natural e funçao expoencial para simplificar a funçao inicial ao inves de aplicar a regra da cadeia direto.

Desculpa eu incomoda tanto com essas questoes mas meu professor realmente nao sabe explicar o que ele faz no quadro e os monitores menos ainda.
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: derivada x^(x^senx)

Mensagempor LuizAquino » Ter Jun 07, 2011 22:46

paula luna escreveu:1ª) quando é dito "...temos uma regra geral para esses casos..." , que casos sao estes?

Leia com mais atenção a minha mensagem.

Considere que y = f(x)^{g(x)}, com f(x) > 0. (...)

Considerando que f e g são diferenciáveis em um mesmo domínio (...)

(...) temos uma regra geral para esses casos: \left[f(x)^{g(x)}\right]^\prime = \left[g(x)\ln f(x)\right]^\prime f(x)^{g(x)}.


paula luna escreveu:2ª) Por que nao pode ser feito a regra da cadeia tomando o expoente x^senx como um 'u' e fazendo x^u ?

Para aplicar a regra da cadeia devemos ter uma função composta. Ou seja, devemos ter algo do tipo f(u(x)).

Agora, reflita sobre a seguinte questão: se colocarmos f(x) = x e u(x) = x^{\textrm{sen}\,x} é verdadeiro que f(u(x)) = x^{u(x)} ?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: derivada x^(x^senx)

Mensagempor paula luna » Sex Jun 10, 2011 04:48

:y: :y: :y: :y: :y: :y:
Ajudou muito, precisei ler umas 7 vezes pra intender da onde vinha a regra, mas intendi.
Cara tu é {10}^{\infty}, vlw pela ajuda msm.
Deus te abençoe.
;)
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?