• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - dúvidas

Derivadas - dúvidas

Mensagempor [icaro] » Sáb Mai 21, 2011 19:06

Não estou conseguindo resolver as seguintes derivadas:

A) f(a)=\frac{{e}^{-a²}}{(1+a²)²}
B) f(x)= (x²+1){e}^{\frac{x³+x²}{x²+1}}
c) f(x)= ln(\frac{1}{x}+\frac{1}{x²})

Tentei, mas só chego em resultados errados :n:
[icaro]
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mar 09, 2011 00:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências e tecnologia
Andamento: cursando

Re: Derivadas - dúvidas

Mensagempor LuizAquino » Dom Mai 22, 2011 11:30

Primeiro, vamos arrumar o que você escreveu:
a) f(a)=\frac{{e}^{-a^2}}{\left(1+a^2\right)^2}

b) f(x)= (x^2+1){e}^{\frac{x^3+x^2}{x^2+1}}

c) f(x)= \ln\left(\frac{1}{x}+\frac{1}{x^2}\right)

Vale destacar que o seu erro ao usar o LaTeX foi escrever x² e x³ ao invés de x^2 e x^3. Ou seja: não use os atalhos de teclado para escrever as potências.

Quanto aos exercícios, quais foram as suas dificuldades ao resolver essas derivadas?

Muito provavelmente você está errando a aplicação da regra da cadeia.

Veja, por exemplo, a solução do primeiro exercício:
f^\prime(a)=\frac{\left({e}^{-a^2}\right)^\prime \left(1+a^2\right)^2 - {e}^{-a^2}\left[\left(1+a^2\right)^2\right]^\prime}{\left[\left(1+a^2\right)^2\right]^2}

f^\prime(a)=\frac{{e}^{-a^2}\left(-a^2\right)^\prime \left(1+a^2\right)^2 - 2{e}^{-a^2}\left(1+a^2\right)\left(1+a^2\right)^\prime}{\left(1+a^2\right)^4}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(1+a^2\right)^2 - 4a{e}^{-a^2}\left(1+a^2\right)}{\left(1+a^2\right)^4}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(1+a^2\right) - 4a{e}^{-a^2}}{\left(1+a^2\right)^3}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(3+a^2\right)}{\left(1+a^2\right)^3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas - dúvidas

Mensagempor [icaro] » Dom Mai 22, 2011 12:54

Eu comecei atribuindo {-a}^{2} como "u" e utilizei os operadores \frac{df}{dx}=\frac{df}{du}\frac{du}{dx} chegando ao resultado de {{e}^{-a}}^{2} \left(-2a \right)

depois apliquei a regra da cadeia chegando a \frac{{{e}^{-a}}^{2} \left(-2a \right)\left(1+{a}^{2} \right)^2 - \left({4a}^{3}+4a \right){{e}^{-a}}^{2}}{\left(1+{a}^{2} \right)^4}
[icaro]
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mar 09, 2011 00:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências e tecnologia
Andamento: cursando

Re: Derivadas - dúvidas

Mensagempor LuizAquino » Dom Mai 22, 2011 13:17

Sendo assim, a sua dúvida está em algo mais básico ainda. Você não soube efetuar a fatoração e em seguida fazer as simplificações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: