por renanrdaros » Qui Abr 28, 2011 00:29
![\lim_{x\rightarrow0}\frac{a\sqrt[3]{x+8}-b}{x}=\frac{1}{4} \lim_{x\rightarrow0}\frac{a\sqrt[3]{x+8}-b}{x}=\frac{1}{4}](/latexrender/pictures/471a55837924b1bd87965f937d53ba6a.png)
Determinar o valor das constantes
a e
b
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qui Abr 28, 2011 08:51
Dica(i) Para que haja uma indeterminação do tipo 0/0, precisamos que
![\lim_{x\to 0} a\sqrt[3]{x+8}-b = 0 \lim_{x\to 0} a\sqrt[3]{x+8}-b = 0](/latexrender/pictures/1c4bb09ae50fe049026af7abdb7de75a.png)
. Disso você deve obter que
b = 2
a.
(ii) Usando (i), você vai precisar resolver a equação
![\lim_{x\to 0}\frac{a\sqrt[3]{x+8}-2a}{x}=\frac{1}{4} \lim_{x\to 0}\frac{a\sqrt[3]{x+8}-2a}{x}=\frac{1}{4}](/latexrender/pictures/f0f6d01bfc6b87f2e176f0f6e7d3c900.png)
.
Note que isso é o mesmo que
![\lim_{x\to 0}\frac{\sqrt[3]{a^3(x+8)}-2a}{x}=\frac{1}{4} \lim_{x\to 0}\frac{\sqrt[3]{a^3(x+8)}-2a}{x}=\frac{1}{4}](/latexrender/pictures/14ef66eb5ed3d0d90de6710baa8c00c6.png)
.
Para resolver o limite no lado esquerdo da equação, multiplique tanto o numerador quanto o denominador por
![\left( \sqrt[3]{[a^3(x+8)]^2}+2a\sqrt[3]{a^3(x+8)} + 4a^2 \right) \left( \sqrt[3]{[a^3(x+8)]^2}+2a\sqrt[3]{a^3(x+8)} + 4a^2 \right)](/latexrender/pictures/4d9bf2bc3515757e005ea03062fa1ed9.png)
. Em seguida, lembre-se do produto notável

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qui Abr 28, 2011 11:02
LuizAquino escreveu:multiplique tanto o numerador quanto o denominador por
![\left( \sqrt[3]{[a^3(x+8)]^2}+2a\sqrt[3]{a^3(x+8)} + 4a^2 \right) \left( \sqrt[3]{[a^3(x+8)]^2}+2a\sqrt[3]{a^3(x+8)} + 4a^2 \right)](/latexrender/pictures/4d9bf2bc3515757e005ea03062fa1ed9.png)
Luiz, não consegui entender essa parte. Normalmente eu tentaria multiplicar pelo conjugado. Por que você multiplicou por essa expressão?
Obrigado pela ajuda!
EDIT: Depois de enviar a pergunta eu acabei percebendo o porquê da multiplicação por aquela expressão gigante ali.
Editado pela última vez por
renanrdaros em Qui Abr 28, 2011 11:16, em um total de 2 vezes.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por renanrdaros » Qui Abr 28, 2011 11:08
Outra coisa que não entendi: Por que você igualou o numerador a zero? Não entendi por que eu preciso que haja uma indeterminação 0/0.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por renanrdaros » Qui Abr 28, 2011 11:34
Cheguei no resultado: a=3 e b=6
É isso?
Se for, só falta entender aquela parte da indeterminação do tipo 0/0
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qui Abr 28, 2011 12:16
Suponha que
![\lim_{x\to 0} a\sqrt[3]{x+8}-b = c \lim_{x\to 0} a\sqrt[3]{x+8}-b = c](/latexrender/pictures/5a257594061199ece2232769a00c5a6b.png)
, com
c uma constante não nula.
Então teríamos o limite:
![\lim_{x\to 0}\frac{a\sqrt[3]{x+8}-b}{x} = \left(\lim_{x\to 0}a\sqrt[3]{x+8}-b\right)\left(\lim_{x\to 0}\frac{1}{x}\right) = c \left(\lim_{x\to 0}\frac{1}{x}\right) \lim_{x\to 0}\frac{a\sqrt[3]{x+8}-b}{x} = \left(\lim_{x\to 0}a\sqrt[3]{x+8}-b\right)\left(\lim_{x\to 0}\frac{1}{x}\right) = c \left(\lim_{x\to 0}\frac{1}{x}\right)](/latexrender/pictures/dbae65bc80361eef4a91923312fe7ccb.png)
Lembre-se que:
(i)

(ii)

De (i) e (ii) temos que não existe o limite

, já que os seus laterais são distintos.
Desse modo, o seu limite original não existiria. Mas, você quer que esse limite exista e seja igual a 1/4. Daí a estratégia de montar a indeterminação do tipo 0/0.
Quanto a saber se sua resposta está certa, você mesmo pode conferir! Basta substituir os valores de
a e
b no limite original e verificar se ele será igual a 1/4.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qui Abr 28, 2011 12:38
Entendi que eu tenho que manipular a expressão para que o limite exista e seja igual a 1/4, mas não entendi ONDE a indeterminação 0/0 entra nisso.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qui Abr 28, 2011 14:19
Em resumo, nós temos uma equação do tipo

.
Já sabemos no exercício que

. Além disso, também sabemos que: g(x)<0, se x<0; g(x)>0, se x>0. Isso significa que

e

.
Se tivéssemos

, com
c uma constante não nula, então o limite

não existiria e portanto a equação original não seria válida.
Desse modo, precisamos tomar que

.
Ora, mas isso é o mesmo que dizer que o limite original possuirá uma indeterminação do tipo 0/0.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Qui Abr 28, 2011 20:26
Normalmente limites de quocientes são finitos (ou seja,

se forem uma indeterminação do tipo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Por favor, alguém resolve essa questão
por gedeaocosta » Ter Nov 22, 2011 16:12
- 1 Respostas
- 2375 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 19:32
Logaritmos
-
- Alguém sabe como resolve (5/2)²-5(5/2)+6 passo a passo??
por Elia » Ter Jul 19, 2016 11:28
- 0 Respostas
- 2485 Exibições
- Última mensagem por Elia

Ter Jul 19, 2016 11:28
Sistemas de Equações
-
- Alguém sabe como resolve (5/2)²-5(5/2)+6 passo a passo??
por Elia » Qua Jul 20, 2016 13:57
- 2 Respostas
- 2013 Exibições
- Última mensagem por Elia

Qua Jul 20, 2016 17:51
Equações
-
- [derivada]Alguem pode responder esta questão
por highway » Qua Dez 21, 2011 12:12
- 1 Respostas
- 1552 Exibições
- Última mensagem por LuizAquino

Qua Dez 21, 2011 13:52
Cálculo: Limites, Derivadas e Integrais
-
- Por favor alguém sabe resolver esta questão
por costav13 » Sáb Nov 09, 2013 10:10
- 3 Respostas
- 2421 Exibições
- Última mensagem por e8group

Dom Nov 10, 2013 13:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.