por john » Seg Fev 14, 2011 16:13
g(x)= (2+x)*e^x
Mostre que g'(x)=(3+x)e^x
Comecei a fazer pela regra do produto.
g'(x)= (2+x)' * e^x + (2+x) * (e^x)'
g'(x)= 1*e^x + (2+x) * 1* (e^x)
g'(x)= e^x + (2+x) * (e^x)
Mas não consigo provar o que é pedido.
Alguém ajuda? Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Fev 14, 2011 22:58
john escreveu:Mas não consigo provar o que é pedido.
Você praticamente já terminou a questão!
Você parou em:
g'(x)= e^x + (2+x) * (e^x)
Mas, isso é o mesmo que:
g'(x)= e^x + 2e^x + xe^x
De onde temos que:
g'(x)= 3e^x + xe^x
Mas, isso é o mesmo que:
g'(x)= (3+x)e^x
ObservaçãoParece que você não está muito afiado com os conteúdos mais fundamentais de Matemática. Para fazer uma revisão desses conteúdos, indico para você o Canal do Nerckie no YouTube:
http://www.youtube.com/nerckie
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Ter Fev 15, 2011 12:41
Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.
Estava treinando outro exercício do género.
Provar que f(x)= ln

= f'(x)=

Fiz a derivada pela regra da divisão e obtive:

Agora seguindo a derivada do logaritmo fiquei com

/

E depois também diz:
Prove que f''(x)=

Fazendo a derivada fiquei com:

Sei que tenho so exercícios praticamente certos. Só não sei fazer a simplificação final.
Obrigado pela atenção!
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Ter Fev 15, 2011 14:51
Exercício:

, calcule f'.
Usando regra da cadeia:

Usando a regra do quociente:


Simplificando os termos (4+2x) e (4+2x)²:


john escreveu:Sim, luiz tem razão. Não estou muito afiado com os conteúdos fundamentais de Matemática. Obrigado pela recomendação.
Tenha certeza que se você investir um tempo para assistir aos vídeos e revisar o conteúdo provavelmente não vai mais errar esse tipo de questão.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Ter Fev 15, 2011 15:01
Obrigado Luiz. Nem sequer conhecia essa regra da cadeia. Vou pesquisar sobre ela.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por john » Sáb Fev 19, 2011 23:00
Estou tentando esta:
Provar que

Eu fiz:

=

'


Depois simplifiquei. Cortei

com

Fiquei com:

Multipliquei e fiquei com:


Está correcto? Fiz bem as regras?
Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Sáb Fev 19, 2011 23:23
john escreveu:Provar que se

, então

john escreveu:Está correcto? Fiz bem as regras?
Correto está, mas você deve tomar cuidado com a escrita, isto é, com a notação usada. Veja como seria a notação correta:

![g^\prime (x) = \frac{x-3}{x-2} \left[\frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}\right] g^\prime (x) = \frac{x-3}{x-2} \left[\frac{1\cdot(x-3)-(x-2)\cdot 1}{(x-3)^2}\right]](/latexrender/pictures/c7ea80086040152d739754365d444de5.png)
![g^\prime (x) = \frac{x-3}{x-2} \left[\frac{-1}{(x-3)^2}\right] g^\prime (x) = \frac{x-3}{x-2} \left[\frac{-1}{(x-3)^2}\right]](/latexrender/pictures/04e87793daaf171764631366016612a2.png)


Uma escrita errada gera um resultado diferente do esperado. Por exemplo, você escreveu:
john escreveu:
Do jeito que isso está escrito nós temos

e não

como era esperado.
Note que o uso dos parênteses faz toda a diferença na expressão

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Dom Fev 20, 2011 00:01
Pois, tem toda a razão. Já num outro dia troquei valores por não colocar parênteses.
Agora tentando outro não consegui.
Provar que g''(x) da mesma função anterior é igual a

Eu estive fazendo e fiz isto:
g'(x)= ((-1)'.(x^2-5x+6))-((-1)(x^2-5x+6))/((x^2-5x+6)^2)
g'(x)= 0 - ((-1)*2x-5)/((x^2-5x+6)^2)
g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
Obrigado!
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Dom Fev 20, 2011 00:10
john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
A questão está praticamente pronta! Lembra-se que

? Basta lembrar disso e você termina a questão.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por john » Dom Fev 20, 2011 00:13
LuizAquino escreveu:john escreveu:g'(x)= (2x-5)/((x^2-5x+6)^2)
Não consigo progredir mais. Pode-me ajudar?
A questão está praticamente pronta! Lembra-se que

? Basta lembrar disso e você termina a questão.
Verdade. Obrigado.
-
john
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Fev 11, 2011 22:46
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10375 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10632 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12848 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14349 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 4858 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.