• Anúncio Global
    Respostas
    Exibições
    Última mensagem

hexagono

hexagono

Mensagempor maria cleide » Qui Mai 12, 2011 17:58

Na figura, ABCDE e F são vértices de um hexágono regular inscrito num círculo, cujo raio mede 1m. A área da região hachurada é quanto em m^2?
Supus que a área hachurada era um terço, pois cada a cirgunferência foi dividida em 3 partes diferentes, logo encontrei a área do hexagono formado pela união dos triângulos e dividi por 3: \dfrac{6\cdot1}{2}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}= \dfrac{\sqrt{3}}{2}. Mas foi somente uma suposiçao, como fazer?
Anexos
digitalizar0006.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: hexagono

Mensagempor MarceloFantini » Qui Mai 12, 2011 18:37

Você não pode supor que a área hachurada é um terço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: hexagono

Mensagempor maria cleide » Qui Mai 12, 2011 20:42

Mas então, como posso desenvolver o problema?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: hexagono

Mensagempor FilipeCaceres » Qui Mai 12, 2011 21:08

Ola Maria Cleide,
Só uma coisinha, como se trata de uma apostila acredito de deva ter os gabaritos, sendo assim peço que sempre os tiver peço que poste juntamente.

Como se trata de um hexagono,observe que este estralhado hachurada nada mais é do que dois triângulos equiláteros, sendo que um rotacionado.
A área de um triângulo equilátero é fácil A_t=\frac{l^2.\sqrt{3}}{4}, agora observe que temos um "furo" na intersecção dos dois triângulos com um formato de hexagono(A'_{hex}) também.

Logo, para saber o valor do restante, basta fazer:
A_{hachurado}=2.(A_{tri}-A'_{hex})

Qualquer dúvida poste novamente.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: hexagono

Mensagempor FilipeCaceres » Qui Mai 12, 2011 21:39

Uma outra forma mais simples seria fazer o seguinte, calcular qual é a altura dos "triângulozinhos" que vale h=\frac{1}{2} e como sabemos que um hexagono é formado por 6 triângulos equiláteros, bastava você calcular qual seria a altura deles, e desta forma você decobriria que ambos tem a mesma medida, portanto a área hachurada é igual a área do hexagono menor.

Agora só resta vc achar quando vale o lado deste hexagono menor e calcular sua área.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: hexagono

Mensagempor maria cleide » Qui Mai 12, 2011 23:01

Meu problema é como achar o lado do triângulo, como posso encontra-lo?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: hexagono

Mensagempor FilipeCaceres » Sex Mai 13, 2011 01:02

Basta você saber que quando temos um triângulo equilátero inscrito em uma circunferênria temos as seguintes relações:
r=\frac{2}{3}h

h=\frac{l\sqrt{3}}{2}

Qualquer dúvida poste novamente.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: hexagono

Mensagempor maria cleide » Sex Mai 13, 2011 22:15

Solução: Como a altura do triângulo menor é \dfrac{1}{2} a do maior é \dfrac{3}{2}. Descobri o valor do lado do triângulo equilátero maior com base na igualdade \dfrac{l\sqrt{3}}{2}=\dfrac{3}{2} encontrando l=\sqrt{3}, logo o lado do triângulo menor que é a mesma do hexagono será \dfrac{\sqrt{3}}{3}. Então calculei o valor da área do hexagono \dfrac{6\cdot\dfrac{\sqrt{3}}{3}}{2}}\cdot\dfrac{\sqrt{3}}{2}=[tex]\dfrac{3}{2}[/tex]. Porém o resultado não bateu com o gabarito que mostra que o valor é \dfrac{\sqrt{3}}{2}. Você consegue identificar onde errei?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: hexagono

Mensagempor FilipeCaceres » Sex Mai 13, 2011 22:28

A área do hexágono é igual a seis vezes a área de um triângulo equilátero, logo
A_h=6.A_t

A_h=6.\frac{l^2\sqrt{3}}{4}

Como o lado vale,
l=\frac{\sqrt{3}}{3}

Assim temos,
A_h=6.\frac{(\frac{\sqrt{3}}{3})^2\sqrt{3}}{4}

A_h=6.\frac{3.\sqrt{3}}{9.4}

Portanto,
A_h=\frac{\sqrt{3}}{2}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: hexagono

Mensagempor maria cleide » Sex Mai 13, 2011 22:41

Obrigada! Até breve.
Abraço Maria Cleide.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?