(Unicamp) Sejam A,B,C e D os vértices de um quadrado de lado a= 10cm; Sejam ainda E e F pontos nos lados AD e DC respectivamente, de modo que BEF seja um triângulo equilátero.
a)Qual o comprimento do lado desse triângulo.
b) Calcule a área do mesmo.
Tentativa:
a)Inicialmente fiz as seguintes deduçoes:
AE=CF=y
DE=DF=Z
m seria a altura do triângulo, então m=
![\frac{x.\sqrt[]{3}}{2} \frac{x.\sqrt[]{3}}{2}](/latexrender/pictures/33825d607b3790da3c00bdeebfdaa56e.png)
A soma das áreas dos triângulos ABE, DEF, BCF E BEF é igual a 100cm²
Então,
=100.Resolvendo essa equação, cheguei ao resultado:
x²=
.Porém no gabarito a resposta é:
a)10(
)cm.b)100(2
cm².Onde foi que eu errei?


corresponde a bissetriz do triângulo
, portanto













![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)