• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadrado - Área, corda, porcentagem.

Quadrado - Área, corda, porcentagem.

Mensagempor Alexander » Sáb Abr 23, 2011 12:08

Olá!
Uns dias atrás estava tentando resolver essa questão de fundamental:
(EAM) Um cavalo deve ser amarrado a uma estaca situada em um dos vértices de um pasto que tem a forma de um quadrado, cujo lado mede 20m. Para que ele possa pastar em cerca de 20% da área total do pasto, a parte inteira, em metros, do comprimento da corda que o prende à estaca deve ser igual a:

A: 1 B:2 C:5 D:8 E:10

Eu estou absolutamente embolado nessa questão.
Um colega meu me explicou pela lógica, sem cálculo, e mesmo assim eu não entendi.
Eu tentei aqui agora calculando a diagonal dele. Um quadrado, lado 20, 20%=4. d=l.\sqrt[]{2} => d=4.\sqrt[]{2} => 4.1,41=5,64.
Só que, a resposta certa é 10.
Eu fui até onde eu consegui.
Ajudem!
Aloha!
"Se não puder se destacar pelo talento, vença pelo esforço." - Dave Weinbaum
Alexander
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Nov 24, 2010 23:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Quadrado - Área, corda, porcentagem.

Mensagempor SidneySantos » Sáb Abr 23, 2011 12:51

Área Total do pasto: 20² = 400 m²

Área em que o cavalo pode pastar: 0,2.400 = 80 m²

Comprimento da Corda:

A = \frac{1}{4}\pi{r}^{2}

80 = \frac{1}{4}.3,14.{r}^{2}

{r}^{2}=\frac{4.80}{3,14}

r = 10,09 m

Letra E
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Re: Quadrado - Área, corda, porcentagem.

Mensagempor Abelardo » Sáb Abr 23, 2011 13:10

Pelo menos vou colocar a imagem que fiz kkkk!


Imagem
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Quadrado - Área, corda, porcentagem.

Mensagempor Alexander » Dom Abr 24, 2011 11:15

Wow! Obrigada!
Abraços.
"Se não puder se destacar pelo talento, vença pelo esforço." - Dave Weinbaum
Alexander
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Nov 24, 2010 23:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}