• Anúncio Global
    Respostas
    Exibições
    Última mensagem

perímetro

perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 13:05

eu não consigo resolver o seguinte exercício, assim que descubro o valor de FE eu empaco. se alguém souber como fazer, sinta-se à vontade.
Anexos
1.JPG
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando

Re: perímetro

Mensagempor VtinxD » Seg Nov 15, 2010 14:33

Perceba que no triângulo FED, retângulo, se usarmos o seno do angulo DFE:
Sen(60°)=\frac{\sqrt[2]{3}}{2}=\frac{ED}{FD}\Rightarrow FD=\frac{2.ED}{\sqrt[2]{3}}\Rightarrow FD=\frac{2.(4\sqrt[2]{3})}{\sqrt[2]{3}}\Rightarrow FD=8
Sendo FD o ponto médio:
FD=GF\Rightarrow 2FD=GD=AC.Utilizando a projeção de F no segmento AC, temos um triângulo retângulo,FF'B.Como F' é projeção de F em AC ele também é ponto médio.Logo:
'FB=FD-BC\Rightarrow 'FB=8-2\sqrt[2]{3}.Como o angulo F'FD é igual a 90° ,temos:
'FFB='FFD-EFD \Rightarrow 'FFB=30°.Agora utilizando a tangente de F'FB:
Tg(30°)=\frac{\sqrt[2]{3}}{3}=\frac{'FB}{F'F}\Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}} \Rightarrow F'F=\frac{3.'FB}{\sqrt[2]{3}}.\frac{\sqrt[2]{3}}{\sqrt[2]{3}}\Rightarrow  F'F='FB.\sqrt[2]{3}.É facil perceber que FF' é igual a GA e DC.
2p=GD+AC+DC+AG=2GD+2DC=4FD+2F'F
Espero ter ajudado.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: perímetro

Mensagempor GeRmE » Seg Nov 15, 2010 15:51

obrigado amigo
Avatar do usuário
GeRmE
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Out 29, 2010 15:34
Formação Escolar: GRADUAÇÃO
Área/Curso: estidante de medicina
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.