• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Área

Cálculo de Área

Mensagempor Lenin » Qui Abr 11, 2013 21:09

(UEFS) O origami é uma técnica japonesa dedobradura de papéis através da qual sepode obter objetos de inúmeras formas.
Para se construir um pássaro através dessatécnica, usou-se uma folha de papel,quadrada, com 2dm de lado, representadana figura 1.
O primeiro passo foi dobrar opapel, fazendo os lados DA e DC doquadrado coincidirem com o segmento DG sobre a diagonal DB desse quadrado,obtendo-se um quadrilátero DEBF, representado na figura 2.
Imagem Imagem
A área doquadrílatero DEBF,em dm², mede:

A) 4\sqrt[2]{2} - 4
B) 8 - 4\sqrt[2]{2}
C) 2\sqrt[2]{2}
D) 1 + \sqrt[2]{2}
E) 2 + 4\sqrt[2]{2}

Eu estou com dúvidas nessa questão..a inicio de conversa, considere a reta EF a base do triângulo hachurado.
Eu sei que, de D a G mede 2dm, chamei a medida de DF e DE de l e a medida de BF e BE de x..eu sei que os triangulos [Unparseable or potentially dangerous latex formula. Error 2 ] (área) e creio eu que a reta DG é 1/2 do diâmetro, e a reta GB é 1/3..
Eu tentei usar realão de quadrilátero *losângulo, mas não consegui achar a medida de EF..se fosse um triângulo equilátero ficava fácil, mas creio eu que não se trata de um triangulo equilátero, ai me compliquei mais ainda. e até agora não achei um jeito de responder essa questão.
Se poderem me dar uma LUZ com ela, agradeço muito.

OBS: DESCULPEM-ME PELO MEU QUADRADO E TRIÂNGULO MAL FEITO
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Cálculo de Área

Mensagempor young_jedi » Sex Abr 12, 2013 12:21

origami.png
origami.png (3.35 KiB) Exibido 2019 vezes


analisando a figura, nos temos que a hhipotenusa do triangulo menor sera

x^2+x^2=h^2

h=x\sqrt{2}

mais nos temos ainda que

2=x+x\sqrt2

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo de Área

Mensagempor Lenin » Sex Abr 12, 2013 21:53

young_jedi escreveu:
origami.png


analisando a figura, nos temos que a hhipotenusa do triangulo menor sera

x^2+x^2=h^2

h=x\sqrt{2}

mais nos temos ainda que

2=x+x\sqrt2

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero


Ah brother vlw, nem atentei para o triângulo equilátero..essa fórmula 2=x+x\sqrt2 no caso seria o lado do quadrado? Abração brother
Editado pela última vez por Lenin em Sex Abr 12, 2013 22:20, em um total de 1 vez.
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Cálculo de Área

Mensagempor young_jedi » Sex Abr 12, 2013 22:20

a hipotenusa do triangulo menor de angulos 45º é igual a x\sqrt2

isso mais x é igual ao lado do quadrado que é 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.