• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana - Triângulo Isósceles] Baricentro

[Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 15:31

01. Qual o valor, em unidades de comprimento, que separa o baricentro do ponto A?
Imagem

Respsota: 2.\sqrt[]{2}

Tive uma idéia de inciar com Geometria Analítica, colocando os eixos "x" e "y" iniciando do ponto A (vértice), mas a continuação não está tão clara ainda. Talvez estabelecendo retas, reta perpendicular e distância entre ponto e reta, eu consiga.

Já agradeço.
Editado pela última vez por raimundoocjr em Qua Jan 30, 2013 13:56, em um total de 1 vez.
raimundoocjr
 

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor sauloandrade » Seg Jan 28, 2013 18:24

Eu fiz que nem você, começei por Geometria Analítica e continuei com os cálculos:
Imagem

Se alguém souber fazer por geometria plana sem utilizar os conceitos de geometria analítica por favor poste a resolução por que fiquei curioso agora :)
sauloandrade
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 28, 2012 12:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor Molina » Seg Jan 28, 2013 18:26

Boa tarde, Raimundo.

Seja G=(x_G,y_G) o baricentro do triângulo ABC. Utilize a formula para encontrar as coordenadas deste ponto:

x_G = \frac{x_A + x_B + x_C}{3}

e

y_G = \frac{y_A + y_B + y_C}{3}

Depois, prossiga como você estava pensando, colocando-o no plano cartesiano e faça a distância da origem até o ponto G.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 18:40

Valeu Molina, fico grato. Mas, tenho curiosidade como o Saulo em saber como resolver apenas por Geometria Plana, se for possível é claro. Como proceder em exercícios assim, seria, talvez, mais fácil com duas visões distintas. :y:
raimundoocjr
 

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor Molina » Seg Jan 28, 2013 19:27

Boa tarde.

raimundoocjr escreveu:Valeu Molina, fico grato. Mas, tenho curiosidade como o Saulo em saber como resolver apenas por Geometria Plana, se for possível é claro. Como proceder em exercícios assim, seria, talvez, mais fácil com duas visões distintas. :y:


Seja H a altura deste triângulo isósceles. Temos a incrível propriedade que o baricentro G divide a altura em razões \frac{1}{3}H e \frac{2}{3}H.

Ou seja, por Pitágoras descobrimos que a altura H do triângulo é 6. Desta forma, a distância do Baricentro ao ponto C é 4 e a distância do baricentro à base AB é 2. Formamos um novo triângulo retângulo de catetos 2 e hipotenusa X, que queremos descobrir.


Ficou mais fácil agora? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [Geometria Plana - Triângulo Isósceles] Baricentro

Mensagempor raimundoocjr » Seg Jan 28, 2013 19:38

Ficou sim. Eu me recordava sobre a propriedade, mas ela usava mais nos triângulos equiláteros. De qualquer forma esclareceu a resolução. :y:
raimundoocjr
 


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}