• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana envolvendo P.A

Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 00:13

Alguem poderia me ajudar com essa questão de geometria plana? Eu tentei por P.A mas não consigo achar a razão! Desde já agradeço!

Dado um triângulo retângulo cujos catetos medem 2cm, construimos um 2º triangulo retangulo onde um dos catetos esta apoiado na hipotenusa do primeiro e o outro cateto mede 2cm. Construimos um 3º triangulo com um dos catetos medindo 2cm e o outro apoiado na hipotenusa do 2º triangulo. Se continuarmos a construir triangulos sempre da mesma forma, a hipotenusa do 15º triangulo medira:

15cm
15 raiz de 2
14 cm
8 cm (acho que é a resposta)
8 raiz de 2
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando

Re: Geometria Plana envolvendo P.A

Mensagempor MarceloFantini » Sáb Mar 03, 2012 00:43

Não é progressão aritmética. A primeira hipotenusa tem valor 2 \sqrt{2}, enquanto que a segunda tem 2 \sqrt{3}.

Repetindo a construção para o terceiro, teremos (2 \sqrt{3})^2 + 2^2 = 12 + 4 = 16, daí a terceira hipotenusa terá 2 \sqrt{4} = 4.

Novamente, para que você perceba, repetimos a construção e vemos que (4)^2 + (2)^2 = 16 + 4 = 20, logo a quarta hipotenusa será 2 \sqrt{5}.

Consegue ver o padrão?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 01:10

Entendi o padrão sim! A terceira hipotenusa é 4 e não 2 raiz de 4 certo?

Mas pra terminar o resto da questão eu vou ter que fazer até o 15º? Não tem uma forma mais rápida?

Obrigada!
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando

Re: Geometria Plana envolvendo P.A

Mensagempor MarceloFantini » Sáb Mar 03, 2012 01:17

Bom, pela pergunta mostra que não percebeu. Lembre-se que \sqrt{4} = 2 logo 2 \sqrt {4} = 2 \cdot 2 = 4, é uma forma diferente de escrever o mesmo número.

O padrão é, se estivermos na n-ésima construção, a hipotenusa será 2 \sqrt{n+1}.

Primeira construção, hipotenusa: 2 \sqrt{1+1} = 2 \sqrt{2}.
Segunda construção, hipotenusa: 2 \sqrt{2+1} = 2 \sqrt{3}.
Terceira construção, hipotenusa: 2 \sqrt{3+1} = 2 \sqrt{4} = 2 \cdot 2 = 4.
Quarta construção, hipotenusa: 2 \sqrt{4+1} = 2 \sqrt{5}.

Assim em diante. Usando isso, resolva.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Plana envolvendo P.A

Mensagempor Ana Carolina Caetano » Sáb Mar 03, 2012 01:26

Ah, agora consegui! Brigadão
Ana Carolina Caetano
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 02, 2012 23:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Medicina
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}