• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vestibulares

Vestibulares

Mensagempor J Hugo » Qua Fev 01, 2012 00:14

kjkjk - Cópia.jpeg
Foto

kjkjk - Cópia (2).jpeg
Foto2


Nessa questão meu resultado so esta dando b) mais e a letra a) ja tenteii varias vezes mais não consigo acha 3,4 m......
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando

Re: Vestibulares

Mensagempor Arkanus Darondra » Qua Fev 01, 2012 14:34

Hugo, por favor, procure redigir os textos do enunciado, e poste apenas imagens das figuras, para facilitar as futuras buscas no fórum.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Vestibulares

Mensagempor fraol » Sex Fev 03, 2012 23:14

Ressalvas feitas, vamos ao problema em questão.

Recortei sua figura e anexei abaixo para o desenvolvimento da solução.

geo0.png
geo0
geo0.png (107.18 KiB) Exibido 1707 vezes

Obs: os valores apresentados abaixo saem por Área do Círculo, Pitágoras e Relações Trigonométricas nos triângulos analisados. Caso reste alguma dúvida sobre a obtenção dos valores retorne.

Se observar o círculo menor verá:

[A1] Um setor circular de raio 2 e ângulo central igual 120 graus ( 2 x 60 ) cuja área é igual \frac{120}{360} . \pi (2)^2 = \frac{4 \pi}{3} .

[A2] Um triângulo isósceles de lados iguais medindo 2 , base medindo 2\sqrt{3} e altura igual a 1 , cuja área é igual a \frac{ 2 \sqrt{3} . (1) }{2}  = \sqrt{3} .

Se observar o círculo maior verá:

[A3] Um setor circular de raio 2 \sqrt{3} e ângulo central igual 60 graus ( 2 x 30 ) cuja área é igual \frac{60}{360} . \pi (2 \sqrt{3} )^2 = 2 \pi .

[A4] Um triângulo equilátero de lado medindo 2 \sqrt{3} , base medindo 2\sqrt{3} e altura igual a 3 , cuja área é igual a \frac{ 2 \sqrt{3} . ( 3 ) }{2}  = 3 \sqrt{3} .

A área solicitada é aquela compreendida pela intersecção dos dois círculos, então essa área vale:

S = ( A1 - A2) + (A3 - A4)

S = \left( \frac{4 \pi}{3} - \sqrt{3} \right) - \left( 2 \pi - 3 \sqrt{3}  \right)

S = \frac{4 \pi}{3} - \sqrt{3} - 2 \pi + 3 \sqrt{3}

Substituindo os valores dados você chegará ao resultado.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Vestibulares

Mensagempor J Hugo » Sáb Fev 04, 2012 08:46

Vlw Cara Td de Bom
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}