por Andreza » Dom Out 23, 2011 11:42
Um artista plástico deseja fazer um painel. Para tanto, deve preencher completamente a superfície de um quadro, no formato de um triangulo equilatero cujo lado mede 48cm, com pequenos triangulos equiláteros multicoloridos, cujos lados medem 1cm. Se esses pequenos triangulos forem pintados em tons diferentes, quantas tonalidades serão necessárias?
Eu tentei achando a área do triangulo, calculando a altura de um triangulo equilatero mas nao quer dar certo.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por LuizAquino » Sáb Nov 12, 2011 09:11
Andreza escreveu:Um artista plástico deseja fazer um painel. Para tanto, deve preencher completamente a superfície de um quadro, no formato de um triangulo equilatero cujo lado mede 48cm, com pequenos triangulos equiláteros multicoloridos, cujos lados medem 1cm. Se esses pequenos triangulos forem pintados em tons diferentes, quantas tonalidades serão necessárias?
Eu tentei achando a área do triangulo, calculando a altura de um triangulo equilatero mas nao quer dar certo.
Área do triângulo equilátero menor:

Área do triângulo equilátero maior:

Quantos triângulos menores pode haver dentro do triângulo maior:

Portanto, a quantidade de tonalidades deve ser 2.304.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Andreza » Sáb Nov 12, 2011 09:56
Muito obrigada mesmo eu aqui quebrando a cabeça para resolver este exercício e nunca imaginei q era só calcula a área e depois dividir. Deus abençoe muito vc pela enorme ajuda.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Triângulo Equilatéro
por Cleyson007 » Seg Mai 25, 2009 08:15
- 6 Respostas
- 2991 Exibições
- Última mensagem por ginrj

Dom Jun 07, 2009 20:39
Geometria Plana
-
- Triangulo Equilatero e GA
por isabelamiaki » Seg Abr 05, 2010 13:19
- 1 Respostas
- 2692 Exibições
- Última mensagem por Elcioschin

Seg Abr 05, 2010 22:09
Geometria Analítica
-
- Triângulo Equilátero
por Pri Ferreira » Qua Mar 21, 2012 14:30
- 1 Respostas
- 1737 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 13:56
Geometria Plana
-
- triângulo equilátero
por zenildo » Qua Jul 15, 2015 11:13
- 4 Respostas
- 7226 Exibições
- Última mensagem por nakagumahissao

Qui Jul 16, 2015 03:34
Geometria Plana
-
- Triângulo equilátero ( urgente)
por Carlos28 » Seg Mar 17, 2014 12:36
- 2 Respostas
- 1664 Exibições
- Última mensagem por Carlos28

Ter Mar 18, 2014 15:24
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.