• Anúncio Global
    Respostas
    Exibições
    Última mensagem

semicircuferência em triângulo

semicircuferência em triângulo

Mensagempor Jean Cigari » Qui Jun 16, 2011 11:00

Não consigo resolver esse exercicio da UF-MG, ele esta na parte de semelhança de triangulos do meu livro, e eu não achei nenhum outro exercicio parecido com ele ou que falasse de semicircuferência em triângulo, gostaria de uma ''luz'', para onde eu tenho que seguir e aonde eu encontraria algo relacionado a isso. Obrigado
P.S: a resposta do livro é r=a (raiz quadrada de dois - 1), o que me deixou mais confuso ainda :S

UF-MG Na figura ao lado, ABCD é um quadrado de lado a e F é o ponto de tangência da diagonal BD com a semicircufêrencia de centro E. Calcule o raio da semicircuferência em função de a.
Imagem
Jean Cigari
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jun 16, 2011 10:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: semicircuferência em triângulo

Mensagempor souzafontes » Qui Jun 16, 2011 12:56

seguinte: pelo ponto de tangência passa uma reta normal que passa pelo centro da semicircunferência.
Imagem
por definição, se AB=a, então BD=a\,\sqrt[]{2},
Imagem
BF é igual ao raio r da semicircunferencia que tbm é igual a AE (ou seja, AE=BF=r)
Imagem
e EB é igual ao lado 'a' MENOS AE (EB=a-r)

percebendo então que os triângulos EBF e ABD são semelhantes, segue

\frac{a\,\sqrt[]{2}}{a}=\frac{a-r}{r}

\sqrt[]{2}=\frac{a-r}{r}

r\,\sqrt[]{2}=a-r

r(\sqrt[]{2}+1)=a

r=\frac{a}{(\sqrt[]{2}+1)}*\frac{(\sqrt[]{2}-1)}{(\sqrt[]{2}-1)}

r=\frac{a(\sqrt{2}-1)}{2-1}

r=\frac{a(\sqrt{2}-1)}{1}

r=a(\sqrt{2}-1)
souzafontes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Mai 31, 2011 14:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: semicircuferência em triângulo

Mensagempor Jean Cigari » Qua Jun 22, 2011 11:16

Entendi, obg :)
Jean Cigari
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jun 16, 2011 10:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)