por Diana » Seg Mai 23, 2011 22:10
Um polígono convexo A, possui 3 lados a mais que um poligono convexo B, quanto às diagonais, o polígono A possui 12 diagonais a mais que o polígono B. Determine quais são os polígonos A e B.
Resposta: heptágono e quadrilátero
Formula d=(n-3).n / 2
Eu faço e não chego a nada, o máximo que eu consegui foi que n de A é o n de B mais 4, e esta errado...
-
Diana
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Mai 03, 2011 00:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por FilipeCaceres » Seg Mai 23, 2011 22:27
Façamos o seguinte,

=lados de A

=lados de B
Assim temos,


Logo,

Substituindo o valor de





, que corresponde ao quadrado.


, que corresponde ao heptágono.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Diana » Seg Mai 23, 2011 22:45
Eu entendi, mas mais ou menos. entendi até quando você substituiu os valores, mas nao encontrei de onde saiu o 24, e por que o 2 em baixo nao ta mais la. será que teria como voce me explicar? desculpa...
-
Diana
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Mai 03, 2011 00:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por FilipeCaceres » Seg Mai 23, 2011 22:56
Escrevendo errado vais er difícil de entender mesmo
Logo,

Substituindo o valor de n_a

Corrigindo.
Sabemos que:

Assim temos,

Substituindo o valor de

,

Multiplicando tudo por 2 e resolvendo temos

O resto é igual.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Diana » Seg Mai 23, 2011 23:19
Agora sim! entendi direitinho, brigadão mesmo! abraço
-
Diana
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Mai 03, 2011 00:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Polígonos] questão sobre polígonos
por -daniel15asv » Qui Ago 02, 2012 20:11
- 2 Respostas
- 2042 Exibições
- Última mensagem por -daniel15asv

Sex Ago 03, 2012 00:24
Geometria Plana
-
- Poligonos
por cristina » Qui Abr 15, 2010 19:37
- 1 Respostas
- 3178 Exibições
- Última mensagem por Elcioschin

Qui Abr 15, 2010 20:25
Geometria Plana
-
- Poligonos
por Jean Cigari » Qui Jun 30, 2011 13:50
- 1 Respostas
- 3722 Exibições
- Última mensagem por FilipeCaceres

Qui Jun 30, 2011 20:29
Geometria Plana
-
- poligonos com PA
por alfabeta » Qua Mar 07, 2012 20:39
- 1 Respostas
- 4148 Exibições
- Última mensagem por MarceloFantini

Qua Mar 07, 2012 23:49
Geometria Plana
-
- Polígonos não-convexos
por maria cleide » Sáb Set 24, 2011 23:03
- 1 Respostas
- 1723 Exibições
- Última mensagem por maria cleide

Qui Set 29, 2011 21:03
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.