• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo volume reservatório

Calculo volume reservatório

Mensagempor fernandocez » Dom Fev 27, 2011 19:00

Olá pessoal, tô com uma questão de concurso que tentei encontrar em livros mas só tem as fórmulas mas eu não consigo só com as fórmulas. Vamos a questão:

59. Um reservatório de gás é feito de um cilindro com um hemisfério em cima, como mostra a figura.

Imagem

O diâmetro do reservatório é de 12m, e a altura total é de 10m. Então, o volume desse reservatório é de, aproximadamente:
resposta: 900 m³

Eu tentei assim, vê se cheguei perto.

Volume da semi-esfera: \frac{2\pi{r}^{3}}{3} = \frac{2.3,14.{6}^{3}}{3}

Volume do cilindro: \pi.{r}^{2}.h = 3,14.6².5

Vol. semi-esfera + vol. do cilindro = 1017,36 (resposta errada).

Eu não sabia o que fazer com a altura e chutei a altura do cilindro 5 a metade do reservatório, mas acho que a altura tá errada porque não encontrei a resposta certa.
Agradeço a algum dos amigo que puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Calculo volume reservatório

Mensagempor LuizAquino » Dom Fev 27, 2011 19:15

Dica: o "hemisfério" é uma semiesfera de raio 6, portanto a sua altura também é 6.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo volume reservatório

Mensagempor fernandocez » Dom Fev 27, 2011 19:39

Valeu Luiz. Agora eu sei, a altura é igual ao raio da semiesfera. Consegui responder. Difícil é guardar esse monte de fórmula prá hora da prova. Tem várias pra volume, área, Geometria analítica e etc. Teria que ter um ano prá estudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}