• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria espacial] Volume de tetraedro

[Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Seg Abr 08, 2013 21:48

qual o volume de um tetraedro regular de 10 cm de altura?

Gabarito 125\sqrt{3}

Eu não consigo desenvolver ela... Fiz de tudo, coloquei altura como um dos catetos, acho a hipotenusa, mas com o valor não consigo encontrar a resposta
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 15:21

um tetraedro regular tem quatro faces sendo que essas são triangulos equilateros, voce tem calcular a area de uma das faces para calcular o volume, como voce tem a altura do tetraedro voce é capaz de achar quanto vale os lados do tetraedro e assim calcular a area de sua base.

Se não conseguir encontrar o lado e a area comente.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 16:22

Eu fiz já, coloquei a altura como cateto e coloquei \frac{2h}{3} como outro cateto para achar a hipotenusa, mas fazendo isso acho um valor, mas com esse valor não dar o resultado... Depois eu coloquei a base com altura 10 cm (já que é um triângulo equilátero) e acho outro valor, mas não dar o resultado... como falei fiz de tudo =s
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 16:34

eu pensei assim sendo o lado igual a l
temos que a medida do vertice da base ate o centro da base sera

\frac{l\sqrt{3}}{3}

então temos que

l^2=\left(\frac{l\sqrt3}{3}\right)^2+h^2

então

l=h\sqrt{\frac{3}{2}}

l=10\sqrt{\frac{3}{2}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 16:59

Imagem Pq seria \frac{l\sqrt{3}}{3}, do vértice até o centro de um triângulo equilatero será sempre esse valor? Eu nunca vi e soube que do vértice até a base seria \frac{l\sqrt{3}}{3}, pois: do centro até a reta seria uma apótema, entao seria \frac{h}{3}, entao faria um pitágoras:
{x}^{2}= {(\frac{l}{2})}^{2} + {(\frac{h}{3})}^{2}... mas com isso não daria \frac{l\sqrt{3}}{3}
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 20:40

na figura tem um desenho do tetraedro e do triangulo

tetraedro.png
tetraedro.png (5.7 KiB) Exibido 3135 vezes


temos que

a.cos(30^o)=\frac{l}{2}

a\frac{\sqrt3}{3}=\frac{l}{2}

a=l\frac{\sqrt3}{3}

e da figura do tetraedro temos

l^2=a^2+h^2

l^2=\left(l\frac{\sqrt3}{3}\right)^2+h^2

portanto

l=h\sqrt{\frac{3}{2}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 21:23

agora entendi, obrigado pela paciência uahauhauhauha
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.