• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria espacial

geometria espacial

Mensagempor creberson » Qua Ago 08, 2012 16:32

ola boa ! tarde . estou prescisando de uma ajuda .

Prove que as faces laterais de uma piramide truncada regular são trapézios isósceles congruentes.
creberson
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 23, 2012 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando

Re: geometria espacial

Mensagempor e8group » Qui Ago 09, 2012 11:07

Bom dia .

Em uma pirâmide regular temos uma região limitada pelo um polígono regular inscrito em uma circunferência ,esta região é área da base da pirâmide .Assim através de outro polígono regular ,onde seus lados são paralelos aos lados do polígono regular da pirâmide .Veja geometricamente ,em particular para um pentágono regular .

pyramid.png


Pela figura em cada face da pirâmide regular nota-se que ,


|DG| = \sqrt{h^2+R^2 +2hRcos(\alpha)} .Onde |DG| represanta uma aresta da face da pirâmide , de modo análogo para cada face da pirâmide chegaremos na mesma relação descrita acima oque implica que cada aresta da pirâmide regular são iguais .

Assim , concluímos que em cada face do tronco da pirâmide temos um trapézio isósceles onde suas bases são paralelas . Portanto em cada face temos traézios congruentes .

É isso .


Espero que ajude !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: geometria espacial

Mensagempor creberson » Qui Ago 09, 2012 21:25

ola boa noite.

não tem outra maneira mais simples de resolver ,esse exercicio?
creberson
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 23, 2012 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando

Re: geometria espacial

Mensagempor e8group » Qui Ago 09, 2012 21:46

Eis a questão ,vou analisar .Mas a principio não vejo outra solução que seja mais simples ,evidentemente há outras ... mas não necessariamente uma solução implica menos trabalho que a outra .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.