• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[teorema de Pitágoras]

[teorema de Pitágoras]

Mensagempor Alane » Qui Ago 02, 2012 09:45

Olá pessoal, gostaria muito da ajuda de vocês em uma questão da VUNESP. O enunciado diz o seguinte:
Uma escada tem 25 degraus iguais. A altura h de cada degrau está para a largura l assim como 2 está para 5. O desnível entre o quinto degrau e o pé da escada A é 1 metro. Qual a distância entre o pé da escada A e o topo da escada B?

Primeiramente tentei fazer uma semelhança de triângulos entre os primeiros 5 degraus com a altura 100 (por ser 1 metro) e um degrau de altura 2 e base 5. Com o resultado obtido que foi de 250 fiz o teorema de Pitágora para achar a hipotenusa. Achando está multipliquei por 25. O resultado deu um absurdo!! 135 metros entre A e B. Mas na verdade o resultado correto é 13m. Gostaria de saber o que fiz de errado e como chegar ao resultado correto!
Obrigada ^^
Alane
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 05, 2012 22:42
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [teorema de Pitágoras]

Mensagempor Russman » Qui Ago 02, 2012 10:42

A resposta é exatamente 13?

Nos meus cálculos eu encontro 12,9 m. Aproximando dá pra pensar em 13.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [teorema de Pitágoras]

Mensagempor Russman » Qui Ago 02, 2012 10:53

Encontrei uma solução exata:

Nessa configuração a altura total da escada é n.h, onde n é o número de degraus e h a altura particular de cada um.

A distância entre o pé da escada e o todo do último degrau é dada por (n-1)l, pois temos de descontar um degrau que não contribui!

Assim, seja d a distãncia do pé ao topo temos

d^2 = (nh)^2 + ((n-1)l)^2

Como exite a proporção \frac{h}{l} = \frac{2}{5} e o desnível do quinto degrau é um metro, isto é, 5h=1\Rightarrow h=\frac{1}{5}, então l =\frac{1}{2}.

Portanto,

d^2 = (nh)^2 + ((n-1)l)^2\Rightarrow d^2 = 5^2 + 12^2 \Rightarrow d=13.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [teorema de Pitágoras]

Mensagempor Alane » Qui Ago 02, 2012 11:39

Nossa que olho de tandera!! kkkkkkkk
Muitissimooo obrigada, foi de muita utilidade sua ajuda!! ^^
Alane
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 05, 2012 22:42
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59